Skip to main content

On High Order Entropy Conservative Numerical Flux for Multiscale Gas Dynamics and MHD Simulations

  • Conference paper
  • First Online:
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 119))

Abstract

The Sjögreen and Yee (On skew-symmetric splitting and entropy conservation schemes for the Euler equations, in Proceedings of ENUMATH09, June 29- July 2, Uppsala University, Sweden, 2009) high order entropy conservative numerical method for compressible gas dynamics is extended to include discontinuities and also extended to the ideal magnetohydrodynamics (MHD). The basic idea is based on Tadmor’s (Acta Numer 12:451–512, 2003) original work for the Euler gas dynamics. For the MHD four formulations of the MHD formulations are considered: (a) the conservative MHD, (b) the Godunov/Powell non-conservative form, (c) the Janhunen MHD with magnetic field source terms (Janhunen, J Comput Phys 160:649–661, 2000), and (d) a MHD with source terms by Brackbill and Barnes (J Comput Phys 35:426–430, 1980). Three forms of the high order entropy numerical fluxes in the finite difference framework are constructed. They are based on the extension of the low order form by Chandrashekar and Klingenberg (SIAM J Numer Anal 54:1313–1340, 2016), and two forms with modifications of the Winters and Gassner (J Comput Phys 304:72–108, 2016) numerical fluxes. For flows containing discontinuities and multiscale turbulence fluctuations the Yee and Sjogreen (High order filter methods for wide range of compressible flow speeds, in Proceedings of the ICOSAHOM09, Trondheim, Norway, June 22–26, 2009) and Kotov et al. (Commun Comput Phys 19:273–300, 2016; J Comput Phys 307:189–202, 2016) high order nonlinear filter approach are extended to include the high order entropy conservative numerical fluxes as the base scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Arakawa, Computational design for long-term numerical integration of the equations of fluid motion: two-dimensional incompressible flow, Part I. J. Comput. Phys. 1, 119–143 (1966)

    Article  MATH  Google Scholar 

  2. G.A. Blaisdell, E.T. Spyropoulos, J.H. Qin, The effect of the formulation of nonlinear terms on aliasing errors in spectral methods. Appl. Numer. Math. 21, 207–219 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. J.U. Brackbill, D.C. Barnes, The effect of nonzero ∇⋅ B on the numerical solution of the magnetohydrodynamics equations. J. Comput. Phys. 35, 426–430 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  4. P. Chandrashekar, C. Klingenberg, Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian Meshes. SIAM J. Numer. Anal. 54, 1313–1340 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Ducros, F. Laporte, T. Soulères, V. Guinot, P. Moinat, B. Caruelle, High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows. J. Comput. Phys. 161, 114–139 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. S.K. Godunov, The symmetric form of magnetohydrodynamics equation. Num. Meth. Mech. Cont. Media 1, 26–34 (1972)

    Google Scholar 

  7. P. Janhunen, A positive conservative method for MHD based on HLL and Roe methods. J. Comput. Phys. 160, 649–661 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. D.V. Kotov, H.C. Yee, A.A. Wray, B. Sjögreen, A.G. Kritsuk, Numerical disipation control in high order shock-capturing schemes for LES of low speed flows. J. Comput. Phys. 307, 189–202 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  9. D.V. Kotov, H.C. Yee, A.A. Wray, B. Sjögreen, High order numerical methods for dynamic SGS model of turbulent flows with shocks. Commun. Comput. Phys. 19, 273–300 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  10. K. Linders, J. Nordström, Uniformly best wavenumber approximations by spatial central difference operators. J. Comput. Phys. 300, 695–709 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  11. B. Sjögreen, H.C. Yee, Multiresolution wavelet based adaptive numerical dissipation control for high order methods. J. Sci. Comput. 20, 211–255 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. B. Sjögreen, H.C. Yee, On skew-symmetric splitting and entropy conservation schemes for the Euler equations, in Proceedings of ENUMATH09, June 29- July 2, Uppsala University, Sweden (2009)

    Google Scholar 

  13. B. Sjögreen, H.C. Yee, D. Kotov, Skew-symmetric splitting and stability of high order central schemes. J. Phys. 837, 012019 (2017)

    Google Scholar 

  14. B. Sjögreen, H.C. Yee, Construction of high order entropy conserving numerical flux for gas dynamics and MHD turbulent simulations. J. Comput. Phys. (2016, submitted)

    Google Scholar 

  15. E. Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes. Math. Comput. 43, 369–381 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. A.R. Winters, G.J. Gassner, Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations. J. Comput. Phys. 304, 72–108 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  18. H.C. Yee, B. Sjögreen, Efficient low dissipative high order schemes for multiscale MHD flows, II: minimization of ∇⋅ B numerical error. J. Sci. Comput. 29, 115–164 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. H.C. Yee, B. Sjögreen, Development of low dissipative high order filter schemes for multiscale Navier-Stokes MHD systems. J. Comput. Phys. 225 910–934 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. H.C. Yee, B. Sjögreen, High order filter methods for wide range of compressible flow speeds, in Proceedings of the ICOSAHOM09, Trondheim, Norway, June 22–26, 2009

    Google Scholar 

  21. H.C. Yee, M. Vinokur, M.J. Djomehri, Entropy splitting and numerical dissipation. J. Comp. Phys. 162, 33–81 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Sjögreen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sjögreen, B., Yee, H.C. (2017). On High Order Entropy Conservative Numerical Flux for Multiscale Gas Dynamics and MHD Simulations. In: Bittencourt, M., Dumont, N., Hesthaven, J. (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016. Lecture Notes in Computational Science and Engineering, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-319-65870-4_29

Download citation

Publish with us

Policies and ethics