Advertisement

Detecting Discontinuities Over Triangular Meshes Using Multiwavelets

  • Mathea J. Vuik
  • Jennifer K. RyanEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 119)

Abstract

It is well known that solutions to nonlinear hyperbolic PDEs develop discontinuities in time. The generation of spurious oscillations in such regions can be prevented by applying a limiter in the troubled zones. In earlier work, we constructed a multiwavelet troubled-cell indicator for one and (tensor-product) two dimensions (SIAM J. Sci. Comput. 38(1):A84–A104, 2016). In this paper, we investigate multiwavelet troubled-cell indicators on structured triangular meshes. One indicator uses a problem-dependent parameter; the other indicator is combined with outlier detection.

References

  1. 1.
    B.K. Alpert, A class of bases in L 2 for the sparse representation of integral operators. SIAM J. Math. Anal. 24(1), 246–262 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    B. Cockburn, An introduction to the discontinuous galerkin method for convection-dominated problems, in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697 (Springer, Berlin/Heidelberg, 1998), pp. 150–268Google Scholar
  3. 3.
    B. Cockburn, C.-W. Shu, The runge-kutta discontinuous galerkin method for conservation laws v: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    M. Dubiner, Spectral methods on triangles and other domains. J. Sci. Comput. 6(4), 345–390 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    M.A. Fortes, M. Moncayo, Multiresolution analysis and supercompact multiwavelets for surfaces. Math. Comput. Simul. 81(10), 2129–2149 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    M.A. Fortes, M.L. Rodríguez, Non-uniform multiresolution analysis for surfaces and applications. Appl. Numer. Math. 75, 123–135 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    N. Gerhard, S. Müller, Adaptive multiresolution discontinuous Galerkin schemes for conservation laws: multi-dimensional case. Comput. Appl. Math. 35, 321–349 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Texts in Applied Mathematics, vol. 54 (Springer, New York, 2008)Google Scholar
  9. 9.
    T. Koornwinder, Two-variable analogues of the classical orthogonal polynomials, in Theory and Application of Special Functions ed. by R. Askey (Elsevier BV, Amsterdam, 1975), pp. 435–495Google Scholar
  10. 10.
    D. Kuzmin, A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods. J. Comput. Appl. Math. 233(12), 3077–3085 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    R.J. LeVeque, in Finite Volume Methods for Hyperbolic Problems, 6th edn. Cambridge Texts in Applied Mathematics (Cambridge University Press, New York, 2002)Google Scholar
  12. 12.
    A. Meister, S. Ortleb, T. Sonar, M. Wirz, An extended discontinuous galerkin and spectral difference method with modal filtering. ZAMM - J. Appl. Math. Mech. Z. Angew. Math. Mech. 93(6–7), 459–464 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    F. Raees, D.R. van der Heul, C. Vuik, A mass-conserving level-set method for simulation of multiphase flow in geometrically complicated domains. Int. J. Numer. Methods Fluids 81(7), 399–425 (2016)CrossRefMathSciNetGoogle Scholar
  14. 14.
    A.B. Shelton, A multi-resolution discontinuous Galerkin method for unsteady compressible flows, PhD thesis, Georgia Institute of Technology, 2008Google Scholar
  15. 15.
    F. Sieglar, Konstruktion von multiwavelets auf dreiecksgittern, Bachelor’s thesis, Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013Google Scholar
  16. 16.
    M.J. Vuik, Limiting and shock detection for discontinuous Galerkin solutions using multiwavelets, Master’s thesis, Delft University of Technology, 2012Google Scholar
  17. 17.
    M.J. Vuik, The use of multiwavelets and outlier detection for troubled-cell indication in discontinuous Galerkin methods, PhD thesis, Delft University of Technology, 2017Google Scholar
  18. 18.
    M.J. Vuik, J.K. Ryan, Multiwavelet troubled-cell indicator for discontinuity detection of discontinuous Galerkin schemes. J. Comput. Phys. 270, 138–160 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    M.J. Vuik, J.K. Ryan, Multiwavelets and jumps in DG approximations, in Spectral and High Order Methods for Partial Differential Equations—ICOSAHOM 2014, ed. by R.M. Kirby, M. Berzins, J.S. Hesthaven. Lecture Notes in Computational Science and Engineering, vol. 106 (Springer International Publishing, Switzerland, 2015)Google Scholar
  20. 20.
    M.J. Vuik, J.K. Ryan, Automated parameters for troubled-cell indicators using outlier detection. SIAM J. Sci. Comput. 38(1), A84–A104 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    T.P.Y. Yu, K. Kolarov, W. Lynch, Barysymmetric multiwavelets on triangle. Technical report 1997-006, Interval Research Corporation (1997)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.VORtechDelftThe Netherlands
  2. 2.School of MathematicsUniversity of East AngliaNorwichUK

Personalised recommendations