Advertisement

A Polynomial Spectral Calculus for Analysis of DG Spectral Element Methods

  • David A. KoprivaEmail author
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 119)

Abstract

We introduce a polynomial spectral calculus that follows from the summation by parts property of the Legendre-Gauss-Lobatto quadrature. We use the calculus to simplify the analysis of two multidimensional discontinuous Galerkin spectral element approximations.

References

  1. 1.
    C. Altmann, A. Beck, A. Birkefeld, F. Hindenlang, M. Staudenmaier, G. Gassner, C.-D. Munz, Discontinuous Galerkin for High Performance Computational Fluid Dynamics (HPCDG). (Springer, Berlin, 2012), pp. 277–288Google Scholar
  2. 2.
    A. Beck, G. Gassner, C.-D. Munz, High order and underresolution, in Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, ed. by R. Ansorge, H. Bijl, A. Meister, T. Sonar. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 120 (Springer, Berlin, 2013), pp. 41–55Google Scholar
  3. 3.
    A.D. Beck, T. Bolemann, D. Flad, H. Frank, G.J. Gassner, F. Hindenlang, C.-D. Munz, High-order discontinuous galerkin spectral element methods for transitional and turbulent flow simulations. Int. J. Numer. Methods Fluids 76(8), 522–548 (2014)CrossRefMathSciNetGoogle Scholar
  4. 4.
    K. Black, A conservative spectral element method for the approximation of compressible fluid flow. Kybernetika 35(1), 133–146 (1999)zbMATHMathSciNetGoogle Scholar
  5. 5.
    K. Black, Spectral element approximation of convection-diffusion type problems. Appl. Numer. Math. 33(1–4), 373–379 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    C. Canuto, A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38(157), 67–86 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods: Fundamentals in Single Domains (Springer, Berlin, 2006)zbMATHGoogle Scholar
  8. 8.
    H.M. Frank, C.-D. Munz, Direct aeroacoustic simulation of acoustic feedback phenomena on a side-view mirror. J. Sound Vib. 371, 132–149 (2016)CrossRefGoogle Scholar
  9. 9.
    G. Gassner, A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    G. Gassner, D.A. Kopriva, A comparison of the dispersion and dissipation errors of Gauss and Gauss–Lobatto discontinuous Galerkin spectral element methods. SIAM J. Sci. Comput. 33, 2560–2579 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    G.J. Gassner, A.D. Beck, On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor. Comput. Fluid Dyn. 27(3–4), 221–237 (2013)CrossRefGoogle Scholar
  12. 12.
    G.J. Gassner, A.R. Winters, D.A. Kopriva, Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39–66 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    G.J. Gassner, A.R. Winters, D.A. Kopriva, A well balanced and entropy conservative discontinuous Galerkin spectral element method for the shallow water equations. Appl. Math. Comput. 272(Part 2), 291–308 (2016)Google Scholar
  14. 14.
    D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations, Scientific Computation (Springer, Berlin, 2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    D.A. Kopriva, G. Gassner, On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J. Sci. Comput. 44(2), 136–155 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    D.A. Kopriva, G. Gassner, An energy stable discontinuous Galerkin spectral element discretization for variable coefficient advection problems. SIAM J. Sci. Comput. 36(4), A2076–A2099 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    D.A. Kopriva, G.J. Gassner, Geometry effects in nodal discontinuous Galerkin methods on curved elements that are provably stable. Appl. Math. Comput. 272(Part 2), 274–290 (2016)Google Scholar
  18. 18.
    D.A. Kopriva, A.R. Winters, M. Bohm, G.J. Gassner, A provably stable discontinuous Galerkin spectral element approximation for moving hexahedral meshes. Comput. Fluids. 139, 148–160 (2016)CrossRefMathSciNetGoogle Scholar
  19. 19.
    D.A. Kopriva, A.R. Winters, M. Bohm, G.J. Gassner, A provably stable discontinuous Galerkin spectral element approximation for moving hexahedral meshes. Comput. Fluids 139, 148–160 (2016). doi:10.1016/j.compfluid.2016.05.023CrossRefMathSciNetGoogle Scholar
  20. 20.
    D.A. Kopriva, J. Nordström, G.J. Gassner, Error boundedness of discontinuous Galerkin spectral element approximations of hyperbolic problems. J. Sci. Comput. 72(1), 1–17 (2017)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    D. Stanescu, D.A. Kopriva, M.Y. Hussaini, Dispersion analysis for discontinuous spectral element methods. J. Sci. Comput. 15(2), 149–171 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Z. Xie, L.-L. Wang, X. Zhao, On exponential convergence of Gegenbauer interpolation and spectral differentiation. Math. Comput. 82, 1017–1036 (2013)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MathematicsThe Florida State UniversityTallahasseeUSA

Personalised recommendations