Skip to main content

High Order DGTD Solver for the Numerical Modeling of Nanoscale Light/Matter Interaction

  • Conference paper
  • First Online:
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 119))

  • 1131 Accesses

Abstract

Nanophotonics is the field of science and technology which aimed at establishing and using the peculiar properties of light and light/matter interactions in various nanostructures. The numerical modeling of such interactions requires to solve the system of time-domain Maxwell equations possibly coupled to appropriate models of physical dispersion in metals such as the Drude and Drude-Lorentz models. In this paper, we discuss about the development of a high order discontinuous Galerkin time-domain solver for nanophotonics applications in the linear regime. For the numerical treatment of dispersion models in metals, we have adopted an Auxiliary Differential Equation (ADE) technique leading to solve the time-domain Maxwell equations coupled to a system of ODEs. We present numerical results that demonstrate the accuracy of the proposed numerical methodology for nanstructured settings involving curvilinear geometrical features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All the simulations are run in parallel on 16 CPUs.

References

  1. K. Busch, M. König, J. Niegemann, Discontinuous Galerkin methods in nanophotonics. Laser Photonics Rev. 5, 1–37 (2011)

    Article  Google Scholar 

  2. M. Carpenter, C. Kennedy, Fourth-order 2n-storage Runge-Kutta schemes. Tech. rep., NASA Technical Memorandum MM-109112 (1994)

    Google Scholar 

  3. T. Chung, S.Y. Lee, E.Y. Song, H. Chun, B. Lee, Plasmonic nanostructures for nanoscale biosensing. Sensors 11, 10907–10929 (2011)

    Article  Google Scholar 

  4. H. Fahs, S. Lanteri, A high-order non-conforming discontinuous Galerkin method for time-domain electromagnetics. J. Comput. Appl. Math. 234, 1088–1096 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes. ESAIM: Math. Model. Numer. Anal. 39(6), 1149–1176 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Hesthaven, T. Warburton, Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181(1), 186–221 (2002)

    MATH  Google Scholar 

  7. J. Huang, J.A. Encinar, Reflectarray Antennas (IEEE Press, New York, 2008)

    Google Scholar 

  8. H. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981)

    Google Scholar 

  9. F. Le, D.W. Brandl, Y.A. Urzhumov, H. Wang, J. Kundu, N.J. Halas, J. Aizpurua, P. Nordlander, Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2, 707–718 (2008)

    Article  Google Scholar 

  10. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010)

    Article  Google Scholar 

  11. S. Maier, Plasmonics - Fundamentals and Applications (Springer, Berlin, 2007)

    Google Scholar 

  12. C. Matysseka, J. Niegemann, W. Hergertb, K. Busch, Computing electron energy loss spectra with the discontinuous Galerkin time-domain method. Photonics Nanostruct. 9(4), 367–373 (2011)

    Article  Google Scholar 

  13. J. Niegemann, M. König, K. Stannigel, K. Busch, Higher-order time-domain methods for the analysis of nano-photonic systems. Photonics Nanostruct. 7, 2–11 (2009)

    Article  Google Scholar 

  14. J. Niegemann, R. Diehl, K. Busch, Efficient low-storage Runge-Kutta schemes with optimized stability regions. J. Comput. Phys. 231(2), 364–372 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House Publishers, Boston, 2005)

    MATH  Google Scholar 

  16. J. Viquerat, Simulation of electromagnetic waves propagation in nano-optics with a high-order discontinuous Galerkin time-domain method. Ph.D. thesis, University of Nice-Sophia Antipolis (2015). https://tel.archives-ouvertes.fr/tel-01272010

  17. J. Viquerat, C. Scheid, A 3D curvilinear discontinuous Galerkin time-domain solver for nanoscale light-matter interactions. J. Comput. Appl. Math. 289, 37–50 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  18. K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  MATH  Google Scholar 

  19. L. Zou, M. Lopez-Garcia, W. Withayachumnankul, C.M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, R. Oulton, M. Klemm, C. Fumeaux, Spectral and angular characteristics of dielectric resonator metasurface at optical frequencies. Appl. Phys. Lett. 105, 191, 109 (2014)

    Google Scholar 

  20. L. Zou, W. Withayachumnankul, C. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, C. Fumeaux, Dielectric resonator nanoantennas at visible frequencies. Opt. Express 21, 1344–1352 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Lanteri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lanteri, S., Scheid, C., Klemm, M., Viquerat, J. (2017). High Order DGTD Solver for the Numerical Modeling of Nanoscale Light/Matter Interaction. In: Bittencourt, M., Dumont, N., Hesthaven, J. (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016. Lecture Notes in Computational Science and Engineering, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-319-65870-4_16

Download citation

Publish with us

Policies and ethics