High Order DGTD Solver for the Numerical Modeling of Nanoscale Light/Matter Interaction

  • Stéphane LanteriEmail author
  • Claire Scheid
  • Maciek Klemm
  • Jonathan Viquerat
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 119)


Nanophotonics is the field of science and technology which aimed at establishing and using the peculiar properties of light and light/matter interactions in various nanostructures. The numerical modeling of such interactions requires to solve the system of time-domain Maxwell equations possibly coupled to appropriate models of physical dispersion in metals such as the Drude and Drude-Lorentz models. In this paper, we discuss about the development of a high order discontinuous Galerkin time-domain solver for nanophotonics applications in the linear regime. For the numerical treatment of dispersion models in metals, we have adopted an Auxiliary Differential Equation (ADE) technique leading to solve the time-domain Maxwell equations coupled to a system of ODEs. We present numerical results that demonstrate the accuracy of the proposed numerical methodology for nanstructured settings involving curvilinear geometrical features.


  1. 1.
    K. Busch, M. König, J. Niegemann, Discontinuous Galerkin methods in nanophotonics. Laser Photonics Rev. 5, 1–37 (2011)CrossRefGoogle Scholar
  2. 2.
    M. Carpenter, C. Kennedy, Fourth-order 2n-storage Runge-Kutta schemes. Tech. rep., NASA Technical Memorandum MM-109112 (1994)Google Scholar
  3. 3.
    T. Chung, S.Y. Lee, E.Y. Song, H. Chun, B. Lee, Plasmonic nanostructures for nanoscale biosensing. Sensors 11, 10907–10929 (2011)CrossRefGoogle Scholar
  4. 4.
    H. Fahs, S. Lanteri, A high-order non-conforming discontinuous Galerkin method for time-domain electromagnetics. J. Comput. Appl. Math. 234, 1088–1096 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    L. Fezoui, S. Lanteri, S. Lohrengel, S. Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes. ESAIM: Math. Model. Numer. Anal. 39(6), 1149–1176 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    J. Hesthaven, T. Warburton, Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181(1), 186–221 (2002)zbMATHGoogle Scholar
  7. 7.
    J. Huang, J.A. Encinar, Reflectarray Antennas (IEEE Press, New York, 2008)Google Scholar
  8. 8.
    H. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981)Google Scholar
  9. 9.
    F. Le, D.W. Brandl, Y.A. Urzhumov, H. Wang, J. Kundu, N.J. Halas, J. Aizpurua, P. Nordlander, Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2, 707–718 (2008)CrossRefGoogle Scholar
  10. 10.
    B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010)CrossRefGoogle Scholar
  11. 11.
    S. Maier, Plasmonics - Fundamentals and Applications (Springer, Berlin, 2007)Google Scholar
  12. 12.
    C. Matysseka, J. Niegemann, W. Hergertb, K. Busch, Computing electron energy loss spectra with the discontinuous Galerkin time-domain method. Photonics Nanostruct. 9(4), 367–373 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Niegemann, M. König, K. Stannigel, K. Busch, Higher-order time-domain methods for the analysis of nano-photonic systems. Photonics Nanostruct. 7, 2–11 (2009)CrossRefGoogle Scholar
  14. 14.
    J. Niegemann, R. Diehl, K. Busch, Efficient low-storage Runge-Kutta schemes with optimized stability regions. J. Comput. Phys. 231(2), 364–372 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House Publishers, Boston, 2005)zbMATHGoogle Scholar
  16. 16.
    J. Viquerat, Simulation of electromagnetic waves propagation in nano-optics with a high-order discontinuous Galerkin time-domain method. Ph.D. thesis, University of Nice-Sophia Antipolis (2015).
  17. 17.
    J. Viquerat, C. Scheid, A 3D curvilinear discontinuous Galerkin time-domain solver for nanoscale light-matter interactions. J. Comput. Appl. Math. 289, 37–50 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)CrossRefzbMATHGoogle Scholar
  19. 19.
    L. Zou, M. Lopez-Garcia, W. Withayachumnankul, C.M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, R. Oulton, M. Klemm, C. Fumeaux, Spectral and angular characteristics of dielectric resonator metasurface at optical frequencies. Appl. Phys. Lett. 105, 191, 109 (2014)Google Scholar
  20. 20.
    L. Zou, W. Withayachumnankul, C. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, C. Fumeaux, Dielectric resonator nanoantennas at visible frequencies. Opt. Express 21, 1344–1352 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Stéphane Lanteri
    • 1
    Email author
  • Claire Scheid
    • 3
  • Maciek Klemm
    • 2
  • Jonathan Viquerat
    • 1
  1. 1.Inria Sophia Antipolis-Méditerranée Research CenterValbonneFrance
  2. 2.Mathematics LaboratoryUniversity of Nice-Sophia AntipolisNiceFrance
  3. 3.Department of Electrical and Electric EngineeringUniversity of BristolBristolUK

Personalised recommendations