Skip to main content

An LES Setting for DG-Based Implicit LES with Insights on Dissipation and Robustness

  • Conference paper
  • First Online:
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016

Abstract

We suggest a new interpretation of implicit large eddy simulation (iLES) approaches based on discontinuous Galerkin (DG) methods by analogy with the LES-PLB framework (Pope, Fluid mechanics and the environment: dynamical approaches. Springer, Berlin, 2001), where PLB stands for ‘projection onto local basis functions’. Within this framework, the DG discretization of the unfiltered compressible Navier-Stokes equations can be recognized as a Galerkin solution of a PLB-based (and hence filtered) version of the equations with extra terms originating from DG’s implicit subgrid-scale modelling. It is shown that for under-resolved simulations of isotropic turbulence at very high Reynolds numbers, energy dissipation is primarily determined by the property-jump term of the Riemann flux employed. Additionally, in order to assess how this dissipation is distributed in Fourier space, we compare energy spectra obtained from inviscid simulations of the Taylor-Green vortex with different Riemann solvers and polynomial orders. An explanation is proposed for the spectral ‘energy bump’ observed when the Lax-Friedrichs flux is employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Kanner, P.O. Persson, Validation of a high-order large-eddy simulation solver using a vertical-axis wind turbine. AIAA J. 54(1), 101–112 (2015)

    Article  Google Scholar 

  2. A.D. Beck, T. Bolemann, D. Flad, H. Frank et al., High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations. Int. J. Numer. Methods Fluids 76(8), 522–548 (2014)

    Article  MathSciNet  Google Scholar 

  3. A. Uranga, P.O. Persson, M. Drela, J. Peraire, Implicit large eddy simulation of transition to turbulence at low Reynolds numbers using a discontinuous Galerkin method. Int. J. Numer. Methods Eng. 87(1–5), 232–261 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. F.F. Grinstein, L.G. Margolin, W.J. Rider, Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  5. L.G. Margolin, W.J. Rider, A rationale for implicit turbulence modelling. Int. J. Numer. Methods Fluids 39(9), 821–841 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. R.C. Moura, S.J. Sherwin, J. Peiró, Modified equation analysis for the discontinuous Galerkin formulation. in Spectral and High Order Methods for Partial Differential Equations, ed. by R.M. Kirby, M. Berzins, J.S. Hesthaven (Springer, Berlin, 2015), pp. 375–383

    Google Scholar 

  7. R.C. Moura, S.J. Sherwin, J. Peiró, Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods. J. Comput. Phys. 298, 695–710 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  8. R.C. Moura, G. Mengaldo, J. Peiró, S.J. Sherwin, On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES/under-resolved DNS of Euler turbulence. J. Comput. Phys. 330, 615–623 (2017)

    Article  MathSciNet  Google Scholar 

  9. S. Pope, Large-eddy simulation using projection onto local basis functions, in Fluid Mechanics and the Environment: Dynamical Approaches, ed. by J. Lumley (Springer, Berlin, 2001), pp. 239–265

    Chapter  Google Scholar 

  10. G.I. Taylor, A.E. Green, Mechanism of the production of small eddies from large ones. Proc. R. Soc. Lond. A. 158(895), 499–521 (1937)

    Article  MATH  Google Scholar 

  11. C.W. Shu, W.S. Don, D. Gottlieb, O. Schilling et al., Numerical convergence study of nearly incompressible, inviscid Taylor-Green vortex flow. J. Sci. Comput. 24(1), 1–27 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 93(5), 1749–1779 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. D.A. Kopriva, G. Gassner, On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J. Sci. Comput. 44(2), 136–155 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. B. Van Leer, J.L. Thomas, P.L. Roe, R.W. Newsome, A comparison of numerical flux formulas for the Euler and Navier-Stokes equations. AIAA Paper 1987–1104 (1987)

    Google Scholar 

  15. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer, Berlin 1999)

    Book  MATH  Google Scholar 

  16. M.E. Brachet, D.I. Meiron, S.A. Orszag, B.G. Nickel et al., Small-scale structure of the Taylor-Green vortex. J. Fluid Mech. 130, 411–452 (1983)

    Article  MATH  Google Scholar 

  17. P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43/2, 357–372 (1981)

    Google Scholar 

  18. V.V. Rusanov, Calculation of interaction of non-steady shock waves with obstacles. USSR J. Comput. Math. Phys. 1, 267–279 (1961)

    Google Scholar 

  19. C.D. Cantwell, D. Moxey, A. Comerford, A. Bolis et al., Nektar++: an open-source spectral/hp element framework. Comput. Phys. Commun. 192, 205–219 (2015)

    Article  Google Scholar 

  20. G. Mengaldo, D. de Grazia, D. Moxey, P.E. Vincent, S.J. Sherwin, Dealiasing techniques for high-order spectral element methods on regular and irregular grids. J. Comput. Phys. 299, 56–81 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  21. G. Falkovich, Bottleneck phenomenon in developed turbulence. Phys. Fluids 6(4), 1411 (1994)

    Google Scholar 

  22. M. Coantic, J. Lasserre, On pre-dissipative ‘bumps’ and a Reynolds-number-dependent spectral parameterization of turbulence. Eur. J. Mech. B 18(6), 1027–1047 (1999)

    Article  MATH  Google Scholar 

  23. A.G. Lamorgese, D.A. Caughey, S.B. Pope, Direct numerical simulation of homogeneous turbulence with hyperviscosity. Phys. Fluids 17(1), 015106 (2005)

    Google Scholar 

  24. U. Frisch, S. Kurien, R. Pandit, W. Pauls et al., Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence. Phys. Rev. Lett. 101(14), 144501 (2008)

    Google Scholar 

  25. C. Cichowlas, P. Bonaïti, F. Debbasch, M. Brachet, Effective dissipation and turbulence in spectrally truncated Euler flows. Phys. Rev. Lett. 95(26), 264502 (2005)

    Google Scholar 

  26. D. Banerjee, S.S. Ray, Transition from dissipative to conservative dynamics in equations of hydrodynamics. Phys. Rev. E 90(4), 041001 (2014)

    Google Scholar 

  27. M.S. Chong, A.E. Perry, B.J. Cantwell, A general classification of three-dimensional flow fields. Phys. Fluids A 2(5), 765–777 (1990)

    Article  MathSciNet  Google Scholar 

  28. A. Tsinober, An Informal Conceptual Introduction to Turbulence (Springer, Berlin, 2009)

    Book  MATH  Google Scholar 

  29. J.D. Gibbon, The three-dimensional Euler equations: where do we stand? Physica D 237(14), 1894–1904 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. D. De Grazia, G. Mengaldo, D. Moxey, P.E. Vincent, S.J. Sherwin, Connections between the discontinuous Galerkin method and high-order flux reconstruction schemes. Int. J. Numer. Methods Fluids 75(12), 860–877 (2014)

    Article  MathSciNet  Google Scholar 

  31. G. Mengaldo, D. Grazia, P.E. Vincent, S.J. Sherwin, On the connections between discontinuous Galerkin and flux reconstruction schemes: extension to curvilinear meshes. J. Sci. Comput. 67(3), 1272–1292 (2016)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo C. Moura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Moura, R.C., Mengaldo, G., Peiró, J., Sherwin, S.J. (2017). An LES Setting for DG-Based Implicit LES with Insights on Dissipation and Robustness. In: Bittencourt, M., Dumont, N., Hesthaven, J. (eds) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016. Lecture Notes in Computational Science and Engineering, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-319-65870-4_10

Download citation

Publish with us

Policies and ethics