Advertisement

An LES Setting for DG-Based Implicit LES with Insights on Dissipation and Robustness

  • Rodrigo C. MouraEmail author
  • Gianmarco Mengaldo
  • Joaquim Peiró
  • Spencer J. Sherwin
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 119)

Abstract

We suggest a new interpretation of implicit large eddy simulation (iLES) approaches based on discontinuous Galerkin (DG) methods by analogy with the LES-PLB framework (Pope, Fluid mechanics and the environment: dynamical approaches. Springer, Berlin, 2001), where PLB stands for ‘projection onto local basis functions’. Within this framework, the DG discretization of the unfiltered compressible Navier-Stokes equations can be recognized as a Galerkin solution of a PLB-based (and hence filtered) version of the equations with extra terms originating from DG’s implicit subgrid-scale modelling. It is shown that for under-resolved simulations of isotropic turbulence at very high Reynolds numbers, energy dissipation is primarily determined by the property-jump term of the Riemann flux employed. Additionally, in order to assess how this dissipation is distributed in Fourier space, we compare energy spectra obtained from inviscid simulations of the Taylor-Green vortex with different Riemann solvers and polynomial orders. An explanation is proposed for the spectral ‘energy bump’ observed when the Lax-Friedrichs flux is employed.

References

  1. 1.
    S. Kanner, P.O. Persson, Validation of a high-order large-eddy simulation solver using a vertical-axis wind turbine. AIAA J. 54(1), 101–112 (2015)CrossRefGoogle Scholar
  2. 2.
    A.D. Beck, T. Bolemann, D. Flad, H. Frank et al., High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations. Int. J. Numer. Methods Fluids 76(8), 522–548 (2014)CrossRefMathSciNetGoogle Scholar
  3. 3.
    A. Uranga, P.O. Persson, M. Drela, J. Peraire, Implicit large eddy simulation of transition to turbulence at low Reynolds numbers using a discontinuous Galerkin method. Int. J. Numer. Methods Eng. 87(1–5), 232–261 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    F.F. Grinstein, L.G. Margolin, W.J. Rider, Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics (Cambridge University Press, Cambridge, 2007)CrossRefzbMATHGoogle Scholar
  5. 5.
    L.G. Margolin, W.J. Rider, A rationale for implicit turbulence modelling. Int. J. Numer. Methods Fluids 39(9), 821–841 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    R.C. Moura, S.J. Sherwin, J. Peiró, Modified equation analysis for the discontinuous Galerkin formulation. in Spectral and High Order Methods for Partial Differential Equations, ed. by R.M. Kirby, M. Berzins, J.S. Hesthaven (Springer, Berlin, 2015), pp. 375–383Google Scholar
  7. 7.
    R.C. Moura, S.J. Sherwin, J. Peiró, Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods. J. Comput. Phys. 298, 695–710 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    R.C. Moura, G. Mengaldo, J. Peiró, S.J. Sherwin, On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES/under-resolved DNS of Euler turbulence. J. Comput. Phys. 330, 615–623 (2017)CrossRefMathSciNetGoogle Scholar
  9. 9.
    S. Pope, Large-eddy simulation using projection onto local basis functions, in Fluid Mechanics and the Environment: Dynamical Approaches, ed. by J. Lumley (Springer, Berlin, 2001), pp. 239–265CrossRefGoogle Scholar
  10. 10.
    G.I. Taylor, A.E. Green, Mechanism of the production of small eddies from large ones. Proc. R. Soc. Lond. A. 158(895), 499–521 (1937)CrossRefzbMATHGoogle Scholar
  11. 11.
    C.W. Shu, W.S. Don, D. Gottlieb, O. Schilling et al., Numerical convergence study of nearly incompressible, inviscid Taylor-Green vortex flow. J. Sci. Comput. 24(1), 1–27 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    D.N. Arnold, F. Brezzi, B. Cockburn, L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 93(5), 1749–1779 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    D.A. Kopriva, G. Gassner, On the quadrature and weak form choices in collocation type discontinuous Galerkin spectral element methods. J. Sci. Comput. 44(2), 136–155 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    B. Van Leer, J.L. Thomas, P.L. Roe, R.W. Newsome, A comparison of numerical flux formulas for the Euler and Navier-Stokes equations. AIAA Paper 1987–1104 (1987)Google Scholar
  15. 15.
    E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer, Berlin 1999)CrossRefzbMATHGoogle Scholar
  16. 16.
    M.E. Brachet, D.I. Meiron, S.A. Orszag, B.G. Nickel et al., Small-scale structure of the Taylor-Green vortex. J. Fluid Mech. 130, 411–452 (1983)CrossRefzbMATHGoogle Scholar
  17. 17.
    P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43/2, 357–372 (1981)Google Scholar
  18. 18.
    V.V. Rusanov, Calculation of interaction of non-steady shock waves with obstacles. USSR J. Comput. Math. Phys. 1, 267–279 (1961)Google Scholar
  19. 19.
    C.D. Cantwell, D. Moxey, A. Comerford, A. Bolis et al., Nektar++: an open-source spectral/hp element framework. Comput. Phys. Commun. 192, 205–219 (2015)CrossRefGoogle Scholar
  20. 20.
    G. Mengaldo, D. de Grazia, D. Moxey, P.E. Vincent, S.J. Sherwin, Dealiasing techniques for high-order spectral element methods on regular and irregular grids. J. Comput. Phys. 299, 56–81 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    G. Falkovich, Bottleneck phenomenon in developed turbulence. Phys. Fluids 6(4), 1411 (1994)Google Scholar
  22. 22.
    M. Coantic, J. Lasserre, On pre-dissipative ‘bumps’ and a Reynolds-number-dependent spectral parameterization of turbulence. Eur. J. Mech. B 18(6), 1027–1047 (1999)CrossRefzbMATHGoogle Scholar
  23. 23.
    A.G. Lamorgese, D.A. Caughey, S.B. Pope, Direct numerical simulation of homogeneous turbulence with hyperviscosity. Phys. Fluids 17(1), 015106 (2005)Google Scholar
  24. 24.
    U. Frisch, S. Kurien, R. Pandit, W. Pauls et al., Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence. Phys. Rev. Lett. 101(14), 144501 (2008)Google Scholar
  25. 25.
    C. Cichowlas, P. Bonaïti, F. Debbasch, M. Brachet, Effective dissipation and turbulence in spectrally truncated Euler flows. Phys. Rev. Lett. 95(26), 264502 (2005)Google Scholar
  26. 26.
    D. Banerjee, S.S. Ray, Transition from dissipative to conservative dynamics in equations of hydrodynamics. Phys. Rev. E 90(4), 041001 (2014)Google Scholar
  27. 27.
    M.S. Chong, A.E. Perry, B.J. Cantwell, A general classification of three-dimensional flow fields. Phys. Fluids A 2(5), 765–777 (1990)CrossRefMathSciNetGoogle Scholar
  28. 28.
    A. Tsinober, An Informal Conceptual Introduction to Turbulence (Springer, Berlin, 2009)CrossRefzbMATHGoogle Scholar
  29. 29.
    J.D. Gibbon, The three-dimensional Euler equations: where do we stand? Physica D 237(14), 1894–1904 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    D. De Grazia, G. Mengaldo, D. Moxey, P.E. Vincent, S.J. Sherwin, Connections between the discontinuous Galerkin method and high-order flux reconstruction schemes. Int. J. Numer. Methods Fluids 75(12), 860–877 (2014)CrossRefMathSciNetGoogle Scholar
  31. 31.
    G. Mengaldo, D. Grazia, P.E. Vincent, S.J. Sherwin, On the connections between discontinuous Galerkin and flux reconstruction schemes: extension to curvilinear meshes. J. Sci. Comput. 67(3), 1272–1292 (2016)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Rodrigo C. Moura
    • 1
    Email author
  • Gianmarco Mengaldo
    • 1
  • Joaquim Peiró
    • 1
  • Spencer J. Sherwin
    • 1
  1. 1.Department of AeronauticsImperial College LondonLondonUK

Personalised recommendations