Skip to main content

New Robotic Platforms

  • Chapter
  • First Online:

Abstract

Robotic surgery has been introduced successfully to facilitate laparoscopic surgery including even radical cystectomy and urinary diversion (Rassweiler et al., Curr Opin Urol 11:309–20, 2001; Wilson et al., Eur Urol 67:363–75, 2015). However, this was accompanied by monopoly of Intuitive Surgical (Teber et al., Curr Opin Urol 19:108–13, 2009; Ghezzi and Corleta, World J Surg 40:2550–7, 2016). The company owns more than 1500 patents regarding robotic surgery of which some of earlier patents will expire in following years (Table 1.1). This promotes new manufacturers to introduce alternate devices (Table 1.2). Recently, we updated significant developments of robotic devices used for urologic surgery and endourology (Minimally invasive surgery in urology, 353–410; Rassweiler et al., BJU Int, 2017). Based on this, we want to focus on technical modifications of upcoming devices with special emphasis on future clinical applicability.

This is a preview of subscription content, log in via an institution.

References

  1. Rassweiler J, Binder J, Frede T. Robotic and telesurgery: will they change our future. Curr Opin Urol. 2001;11:309–20.

    Article  CAS  PubMed  Google Scholar 

  2. Wilson TG, Guru K, Rosen RC, et al. Consensus Panel. Best practices in robot-assisted radical cystectomy and urinary reconstruction: recommendations of the Pasadena Consensus Panel. Eur Urol. 2015;67:363–75.

    Article  PubMed  Google Scholar 

  3. Teber D, Baumhauer M, Guven EO, Rassweiler J. Robotics and imaging in urological surgery. Curr Opin Urol. 2009;19:108–13.

    Article  PubMed  Google Scholar 

  4. Ghezzi L, Corleta C. 30 years of robotic surgery. World J Surg. 2016;40(10):2550–7.

    Article  Google Scholar 

  5. Rassweiler J, Bach T, Liatsikos E, Rane A, Richstone L, Teber D, Tewari A. Future of minimally invasive surgery. In: Artibani W, Rassweiler J, Kaouk J, Menon M, editors. Minimally invasive surgery in urology, International consultation on minimally invasive surgery in urology (ICUD-EAU 2015). p. 353–410. isbn:978-9953-493-22-0.

    Google Scholar 

  6. Rassweiler JJ, Autorino R, Klein J, Mottrie A, Goezen AS, Stolzenburg JU, Rha KH, Schurr M, Kaouk J, Patel V, Dasgupta P, Liatsikos E. Future of robotic surgery in urology. BJU Int. 2017.

    Google Scholar 

  7. Schurr MO, Arezzo A, Buess GF. Robotics and systems technology for advanced endoscopic procedures: experiences in general surgery. Eur J Cardiothorac Surg. 1999;16(Suppl 2):S97–105.

    PubMed  Google Scholar 

  8. Schurr MO, Buess G, Neisius B, Voges U. Robotics and telemanipulation technologies for endoscopic surgery. A review of the ARTEMIS project. Surg Endosc. 2000;14:375–81.

    Article  CAS  PubMed  Google Scholar 

  9. Rininsland H. ARTEMIS. A telemanipulator for cardiac surgery. Eur J Cardiothorac Surg. 1999;16(Suppl 2):S106–11.

    PubMed  Google Scholar 

  10. Reichenspurner H, Damiano R, Mack M, et al. Use of the voice-controlled surgical system ZEUS for endoscopic coronary bypass grafting. J Thorac Cardiovasc Surg. 1999;118:11–6.

    Article  CAS  PubMed  Google Scholar 

  11. Kavoussi LR, Moore RG, Adams JB, Partin AW. Comparison of robotic versus human laparoscopic camera control. J Urol. 1995;154:2134–6.

    Article  CAS  PubMed  Google Scholar 

  12. Marescaux J, Leroy J, Gagner M, et al. Transatlantic robot-assisted telesurgery. Nature. 2001;413:379–80.

    Article  CAS  PubMed  Google Scholar 

  13. Wagner AA, Varkarakis M, Link RE, Sullivan W, Su L-M. Comparison of surgical performance during laparoscopic radical prostatectomy of two robotic camera holders; EndoAssist and AESOP: a pilot study. Urology. 2006;68:70–4.

    Article  PubMed  Google Scholar 

  14. Janetschek G, Bartsch G, Kavoussi LR. Transcontinental interactive laparoscopic telesurgery between the United States and Europe. J Urol. 1998;160:1413–5.

    Article  CAS  PubMed  Google Scholar 

  15. Rassweiler J, Gözen AS, Scheitlin W, Teber D, Frede T. Robotic-assisted surgery: low-cost-options. In: Kumar S, Marescaux J, editors. Telesurgery. Heidelberg: Springer; 2008. p. 67–89.

    Chapter  Google Scholar 

  16. Luke PP, Girvan AR, Al Omar M, et al. Laparoscopic robotic pyeloplasty using Zeus telesurgical system. Can J Urol. 2004;11:2396–400.

    PubMed  Google Scholar 

  17. Guillonneau B, Cappèle O, Bosco J, Vallancien G. Robotic assisted laparoscopic pelvic lymph node dissection in humans. J Urol. 2001;165:1078–81.

    Article  CAS  PubMed  Google Scholar 

  18. http://surgrob.blogspot.de/2010/03/vintage-report-on-intuitive-vs-computer.html

  19. Green PE, Piantanida TA, Hill JW, et al. Telepresence: dexterious procedures in a virtual operating field. Am Surg. 1991;57:192.

    Google Scholar 

  20. Satava RM. Robotics, telepresence and virtual reality: a critical analysis of the future of surgery. Minim Invasive Ther. 1992;1:357–63.

    Google Scholar 

  21. Feder BJ. Prepping robots to perform surgery, Business Day, 2008. http://www.nytimes.com/2008/05/04/business/04moll.html?pagewanted=all

  22. Mohr FW, Falk V, Diegeler A, Autschbach R. Computer-enhanced coronary artery surgery. J Thorac Cardiovasc Surg. 1999;117:1212–5.

    Article  CAS  PubMed  Google Scholar 

  23. Binder J, Kramer W. Robotically assisted laparoscopic radical prostatectomy. BJU Int. 2001;87:408–10.

    Article  CAS  PubMed  Google Scholar 

  24. Abbou CC, Hoznek A, Salomon L, et al. Laparoscopic radical prostatectomy with a remote controlled robot. J Urol. 2001;165:1964–6.

    Article  CAS  PubMed  Google Scholar 

  25. Pasticier G, Rietbergen JBW, Guillonneau B, et al. Robotically assisted laparoscopic radical prostatectomy. Feasibility study in men. Eur Urol. 2001;40:70–4.

    Article  CAS  PubMed  Google Scholar 

  26. Rassweiler J, Frede T, Seemann O, et al. Telesurgical laparoscopic radical prostatectomy—intial experience. Eur Urol. 2001;40:75–83.

    Article  CAS  PubMed  Google Scholar 

  27. Menon M, Shrivastava A, Tewari A, et al. Laparoscopic and robot assisted radical prostatectomy: establishment of a structured program and preliminary analysis of outcomes. J Urol. 2002;168:945–9.

    Article  PubMed  Google Scholar 

  28. Rassweiler J, Frede T, Seemann O, Stock C, Sentker L. Telepresence surgery: first experiences with laparoscopic radical prostatectomy. Minim Invasive Ther Allied Technol. 2001;10:261–70.

    Article  Google Scholar 

  29. Rao R, Nayyar R, Panda S, Hemal AK. Surgical techniques: robotic bladder diverticulectomy with the da Vinci-S system. J Robot Surg. 2007;1:217–20.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kang SW, Lee SC, Lee SH, et al. Robotic thyroid surgery using gasless, transaxillary approach and the da Vinci S system: the operative outcomes of 338 consecutive patients. Surgery. 2009;146:1048–55.

    Article  PubMed  Google Scholar 

  31. Tobis S, Knopf J, Silvers C, et al. Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors. J Urol. 2011;186:47–52.

    Article  PubMed  Google Scholar 

  32. Autorino R, Zargar H, White WM, et al. Current applications of near-infrared fluorescence imaging in robotic urologic surgery: a systematic review and critical analysis of the literature. Urology. 2014;84:751–9.

    Article  PubMed  Google Scholar 

  33. Autschbach R, Falk V, Stein H, Mohr FW. Experience with a new OR dedicated to robotic surgery. Minim Invasive Ther Allied Technol. 2000;9:213–7.

    Article  CAS  PubMed  Google Scholar 

  34. Cestari A, Buffi NM, List G, et al. Feasibility and preliminary clinical outcomes of robotic laparoendoscopic single-site (R-LESS) pyeloplasty using a new single-port platform. Eur Urol. 2012;62:175–9.

    Article  PubMed  Google Scholar 

  35. Kaouk JH, Haber GP, Autorino R, et al. A novel robotic system for single-port urologic surgery: first clinical investigation. Eur Urol. 2014;66:1033–43.

    Article  PubMed  Google Scholar 

  36. Irving M. Da Vinci X is designed to get robotic surgery systems into more hospitals. http://newatlas.com/da-vinci-x-surgical-robot/49289/#gallery. Accessed 1 May 2017.

  37. Gidaro S, Buscarini M, Ruzi E, et al. Telelap Alf-X: a novel telesurgical system for the 21st century. Surg Technol Int. 2012;22:20–5.

    PubMed  Google Scholar 

  38. Frede T, Hammady A, Klein J, et al. The radius surgical system—a new device for complex minimally invasive procedures in urology? Eur Urol. 2007;51:1015–22.

    Article  PubMed  Google Scholar 

  39. Gidaro S, Altobelli E, Falavolti C, et al. Vesicourethral anastomosis using a novel telesurgical system with haptic sensation, the Telelap Alf-X: a pilot study. Surg Technol Int. 2014;24:35–40.

    PubMed  Google Scholar 

  40. Falavolti C, Gidaro S, Ruiz E, et al. Experimental nephrectomies using a novel Telesurgical System: (The Telelap ALF-X)—a pilot study. Surg Technol Int. 2014;25:37.

    PubMed  Google Scholar 

  41. www.transenterix.com/news-item/transenterix-aquires-alf-x-surgical-robot-system/

  42. Rossito C, Gueli Alletti S, et al. Use of robot-specific resources and operating room times: the case of Telelap Alf-X robotic hysterectomy. Int J Med Robot. 2016;12:614–9.

    Google Scholar 

  43. Fanfani F, Restaino S, Rossitto C, et al. Total laparoscopic (S-LPS) versus TELELAP ALF-X robotic-assisted hysterectomy: a case control study. J Minim Invasive Gynecol. 2016;23:933–8.

    Article  PubMed  Google Scholar 

  44. http://www.transenterix.com/overview/

  45. Hagn U, Konietschke R, Tobergte A, et al. DLR Miro surge: a versatile system for research in endoscopic telesurgery. Int J Comput Assist Radiol Surg. 2010;5:183–9.

    Article  PubMed  Google Scholar 

  46. Thielmann S, Seibold U, Haslinger R, et al. MICA—a new generation of versatile instruments in robotic surgery. Proc Int Conference Intelligent Robots and Systems. Taipeh; 2010.

    Google Scholar 

  47. http://www.forcedimension.com/products

  48. Surgrob: News from Medtronic and DLR. http://surgrob.blogspot.de/2016/06/news-from-medtronic-and-dlr.html

  49. Medtronic press release. http://newsroom.medtronic.com/phoenix.zhtml?c=251324&p=irol-newsArticle&ID=2010595

  50. http://www.avatera.eu/1/robot-assisted-surgery/

  51. Tuliao PH, Kim SW, Rha KH. New technologies in robotic surgery: the Korean experience. Curr Opin Urol. 2014;24:111–7.

    Article  PubMed  Google Scholar 

  52. Lee W-J. Ten-year experience of the da Vinci robotic surgery at Severance Yonsei University Hospital in Korea. Hanyang Med Rev. 2016;36(4):215–24.

    Article  Google Scholar 

  53. Kim DD, Park DW, Rha KH. Robot-assisted partial nephrectomy with the REVO I-robot platform in porcine models. Eur Urol. 2016;69:541–2.

    Article  PubMed  Google Scholar 

  54. Abdel Rahem A, Troya IS, Kim DK, et al. Robot-assisted Fallopian tube transection-anastomosis using the new REVO 1 robotical surgical system: feasibility in a chronic porcine study. BJU Int. 2016;118:604–9.

    Article  Google Scholar 

  55. http://www.meerecompany.com/en/product/surgical_01.asp

  56. Dasgupta P, Tadashi T, Rha K, Stark M. Panel discussion: robots on the horizon. http://www.aua2016.org/webcasts/webcast_play.cfm?videoID=3804&agendaid=10182&id=11318,11323,11328,11333,10263,10264,10304,10182,10186,10225,10226,10246,10312, 10251,11846

  57. http://www.sysmex.co.jp/en/corporate/news/2016/160113.html

  58. http://www.medicaroid.com/en/company/

  59. www.theguardian.com/technology/2017/feb/28/boston-dynamics-handle-nightmare-inducing-hybrid-robot-google

  60. http://www.prnewswire.com/news-releases/johnson--johnson-announces-formation-of-verb-surgical-inc-in-collaboration-with-verily-300191210.html

  61. www.verbsurgical.com

  62. http://www.fiercebiotech.com/special-report/fiercemedicaldevices-2016-fierce-15-verb-surgical

  63. www.sri.com/engage/products-solutions/taurus-dexterous-robot

  64. Albala D. Titan Robot (Canada), presented at 31st World Congress of Endourology. 2013.

    Google Scholar 

  65. http://www.titanmedicalinc.com/titan-medical-inc-completes-amadeus-composertm-pre-production-console-and-video-tower

  66. http://www.titanmedicalinc.com/technology/

  67. Hannaford B, Rosen J, Friedman DW, et al. Raven-II: an open platform for surgical robotics research. IEEE Trans Biomed Eng. 2013;60:954–9.

    Article  PubMed  Google Scholar 

  68. Van den Bedem LJM. Realization of a demonstrator slave for robotic minimally invasive surgery. Eindhoven: Technische Universiteit Eindhoven; 2010; isbn:978-90-386-2300-9.

    Google Scholar 

  69. http://surgrob.blogspot.de/2015/03/bit-cordoba-new-spanish-surgial-robot.html

  70. http://www.uco.es/investigacion/ucci/uconews/item/1344-a-team-of-andalusian-engineers-and-surgeons-develope-the-first-spanish-surg

  71. Rassweiler JJ, Teber D. Advances in laparoscopic surgery in urology. Nat Rev Urol. 2016;13:387–99.

    Article  PubMed  Google Scholar 

  72. Ramirez D, Maurice MJ, Kaouk JH. Robotic perineal radical prostatectomy and pelvic lymph node dissection using a purpose-built single-port robotic platform. BJU Int. 2016;118(5):829–33. https://doi.org/10.1111/bju.13581.

    Article  PubMed  Google Scholar 

  73. Maurice MJ, Ramirez D, Kaouk JH. Robotic laparoendoscopic single-site retroperitioneal renal surgery: initial investigation of a purpose-built single-port surgical system. Eur Urol. 2016;71(4):643–7. https://doi.org/10.1016/j.eururo.2016.06.005.

    Article  PubMed  Google Scholar 

  74. http://www.titanmedicalinc.com/titan-medical-reports-second-quarter-financial-results-and-provides-sport-surgical-system-development-update

  75. https://www.medgadget.com/2016/02/titan-medical-unveils-sport-surgical-robotic-system.html

  76. Petroni G, Niccolini M, Caccavaro S, et al. A novel robotic system for single-port laparoscopic surgery: preliminary experience. Surg Endosc. 2013;27:1032–937.

    Google Scholar 

  77. Herrell SD, Webster R, Simaan N. Future robotic platforms in urologic surgery: recent developments. Curr Opin Urol. 2014;24:118–26.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wortman TD, Mondry JM, Farritor SM, Oleynikov D. Single-site colectomy with miniature in vivo robotic platform. IEEE Trans Biomed Eng. 2013;60(4):926–9.

    Article  PubMed  Google Scholar 

  79. Lehman AC, Wood NA, Farritor S, Goede MR, Oleynikov D. Dexterous miniature robot for advanced minimally invasive surgery. Surg Endosc. 2011;25:119–23.

    Article  PubMed  Google Scholar 

  80. Kobayashi Y, Sekiguchi Y, Noguchi T, Takahashi Y, et al. Development of a robotic system with six-degrees-of-freedom robotic tool manipulators for single-port surgery. Int J Med Robot. 2015;11:235–46.

    Article  PubMed  Google Scholar 

  81. Haber GP, Autorino R, Laydner Y, et al. Spider surgical system for urologic procedures with laparoendoscopic single-site surgery from initial laboratory experience to first clinical application. Eur Urol. 2012;61:415–22.

    Article  PubMed  Google Scholar 

  82. http://www.transenterix.com/company/our-history/

  83. Kawai T, Shin M, Nishizawa Y, et al. Mobile locally operated detachable end-effector manipulator for endoscopic surgery. Int J Comput Assist Radiol Surg. 2015;10:161–9.

    Article  PubMed  Google Scholar 

  84. Jaspers JEN, Bentala M, Herder JL, et al. Mechanical manipulator for intuitive control of endoscopic instruments with seven degrees of freedom. Minim Invasive Ther Allied Technol. 2004;13:191–8.

    Article  CAS  PubMed  Google Scholar 

  85. http://www.laparasurgical.com/

  86. Rassweiler JJ, Goezen AS, Jalal AA, et al. A new platform improving the ergonomics of laparoscopic surgery: initial clinical evaluation of the prototype. Eur Urol. 2012;61:226–9.

    Article  PubMed  Google Scholar 

  87. Rassweiler JJ, Klein J, Tschada A, Gözen AS. Laparoscopic retroperitoneal partial nephrectomy using an ergonomic chair: demonstration of technique and matched-pair analysis. BJU Int. 2017;119(2):349–57. https://doi.org/10.1111/bju.13627.

    Article  PubMed  Google Scholar 

  88. http://www.dexteritesurgical.com/robot-dex

  89. Desai MM, Grover R, Aron M, et al. Robotic flexible ureteroscopy for renal calculi: initial clinical experience. J Urol. 2011;186:563–8.

    Article  PubMed  Google Scholar 

  90. Saglam R, Muslumanoglu AY, Tokatlı Z, et al. A new robot for flexible ureteroscopy: development and early clinical results (IDEAL stage 1-2b). Eur Urol. 2014;66:1092–100.

    Article  PubMed  Google Scholar 

  91. Williams S, Swanson C. Bull vs. bear: Intuitive Surgical, Inc. Stock. http://www.fool.com/investing/general/2014/10/06/bull-vs-bear-intuitive-surgical-inc-stock.aspx

  92. Alpha deal group LCC: could Titan Medical storm the robotic market?. http://alphanow.thomsonreuters.com/2014/03/titan-storm-robotic-surgery-market/

  93. Shademan A, Decker RS, Opfermann JD, et al. Supervised autonomous robotic soft tissue surgery. Sci Transl Med. 2016;8:337–42.

    Article  Google Scholar 

  94. Cha J, Shademan A, Le HN, Decker R, et al. Multispectral tissue characterization for intestinal anastomosis optimization. J Biomed Opt. 2015;20(10):106001. https://doi.org/10.1117/1.JBO.20.10.106001.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Gilling P, Reuther R, Kahokehr A, Fraundorfer M. Aquablation—image-guided robot-assisted waterjet ablation. BJU Int. 2016;117:923–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens J. Rassweiler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Rassweiler, J.J., Goezen, A.S., Klein, J., Liatsikos, E. (2018). New Robotic Platforms. In: John, H., Wiklund, P. (eds) Robotic Urology. Springer, Cham. https://doi.org/10.1007/978-3-319-65864-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65864-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65863-6

  • Online ISBN: 978-3-319-65864-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics