Skip to main content

Scientific Basis of Immediate Loading and the Biomechanics of Graft-Less Solutions

  • Chapter
  • First Online:
Book cover Graftless Solutions for the Edentulous Patient

Abstract

The implementation of graft-less solutions requires the clinician to have a clear grasp of many detailed clinical concepts. Diagnosis is critical for long-term success of the procedure. There has been a paradigm shift in the treatment of the edentulous patient with dental implants. Today the graft-less approach combines three published variables: (1) four to six implants to support a full-arch fixed restoration, (2) use of tilted implants for graft-less anchorage and (3) immediate loading to provide immediate function.

For an optimal outcome it is imperative that concepts of immediate loading, biomechanics of the restoration design and management of the occlusal scheme be understood.

The clinical application of the graft-less concept has been well accepted and survival rates in excess of 98% have been reported in the literature [1].

The purpose of this chapter is to shed light on the science and biomechanical aspects of immediate loading of the edentulous patient utilizing a graft-less approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Busenlechner D, Mailath-Pokorny G, Haas R, Fürhauser R, Eder C, Pommer B, Watzek G. Graftless full-arch implant rehabilitation with Interantral implants and immediate or delayed loading part II: transition from the failing maxillary dentition. Int J Oral Maxillofac Implants. 2016;31(5):1150–5.

    Article  Google Scholar 

  2. Davarpanah M. Immediate loading of dental implants theory and clinical practice. USA: Quintessence International; 2008. p. x–xi.

    Google Scholar 

  3. Esposito M, Grusovin MG, Willings M, Coulthard P, Worthington HV. The effectiveness of immediate, early, and conventional loading of dental implants: a Cochrane systematic review of randomized controlled clinical trials. Int J Oral Maxillofac Implants. 2007;22:893–904.

    PubMed  Google Scholar 

  4. Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille JH. Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. J Biomed Mater Res. 1998;43:192–203.

    Article  Google Scholar 

  5. Ottoni JM, Oliveira ZF, Mansini R, Cabral AM. Correlation between placement torque and survival of single-tooth implants. Int J Oral Maxillofac Implants. 2005;20:769–76.

    PubMed  Google Scholar 

  6. Ghoul WE, Chidiac JJ. Prosthetic requirements for immediate implant loading: a review. J Prosthodont. 2012;21(2):141–54.

    Article  Google Scholar 

  7. Millen C, Brägger U, Wittneben JG. Influence of prosthesis type and retention mechanism on complications with fixed implant-supported prostheses: a systematic review applying multivariate analyses. Int J Oral Maxillofac Implants. 2015;30(1):110–24.

    Article  Google Scholar 

  8. Wittneben JG, Millen C, Brägger U. Clinical performance of screw- versus cement-retained fixed implant-supported reconstructions–a systematic review. Int J Oral Maxillofac Implants. 2014;29(Suppl):84–98.

    Article  Google Scholar 

  9. Brunski JB. In vivo bone response to biomechanical loading at the bone/dental-implant interface. Adv Dent Res. 1999;13:99–119.

    Article  Google Scholar 

  10. Ericsson I, Randow K, Nilner K, et al. Early functional loading of Branemark dental implants. A 5 year follow up study. Clin Implant Dent Relat Res. 2000;2:70–7.

    Article  Google Scholar 

  11. Chow J, Hui E, Li D, et al. Immediate loading of Branemark system fixtures in the mandible with a fixed provisional prosthesis. Appl Osseointegration Res. 2001;2:30–5.

    Google Scholar 

  12. Friberg B, Henningsson C, Jemt T. Rehabilitation of edentulous mandibles by means of turned Branemark system implants after one stage surgery: a 1 year retrospective study of 152 patients. Clin Implant Dent Relat Res. 2005;7:1–9.

    Article  Google Scholar 

  13. Kinsel RP, Lamb RE, Moneim A. Development of gingival esthetics in the edentulous patient with immediately loaded, single-stage, implant-supported fixed prostheses: a clinical report. Int J Oral Maxillofac Implants. 2000;15:711–21.

    PubMed  Google Scholar 

  14. Balshi SF, Allen FD, Wolfinger GJ, et al. A resonance frequency analysis assessment of maxillary and mandibular immediately loaded implants. Int J Oral Maxillofac Implants. 2005;20:584–94.

    PubMed  Google Scholar 

  15. Bergkvist G, Simonsson K, Rydberg K, et al. A finite element analysis of stress distribution in bone tissue surrounding uncoupled or splinted dental implants. Clin Implant Dent Relat Res. 2008;10:40–6.

    Article  Google Scholar 

  16. Schnitman PA, Wohrle PS, Rubenstein JE, et al. Ten-year results for Branemark implants immediately loaded with fixed prostheses at implant placement. Int J Oral Maxillofac Implants. 1997;12:495–503.

    PubMed  Google Scholar 

  17. Kinsel RP, Liss M. Retrospective analysis of 56 edentulous dental arches restored with 344 single-stage implants using an immediate loading fixed provisional protocol: statistical predictors of implant failure. Int J Oral Maxillofac Implants. 2007;22:823–30.

    PubMed  Google Scholar 

  18. Suarez-Feito JM, Sicilia A, Angulo J, Banerji S, Cuesta I, Millar B. Clinical performance of provisional screw-retained metal-free acrylic restorations in an immediate loading implant protocol: a 242 consecutive patients' report. Clin Oral Implants Res. 2010;21(12):1360–9.

    Article  Google Scholar 

  19. Glauser R, Sennerby L, Meredith N, Rée A, Lundgren A, Gottlow J, Hämmerle CH. Resonance frequency analysis of implants subjected to immediate or early functional occlusal loading. Successful vs. failing implants. Clin Oral Implants Res. 2004;15(4):428–34.

    Article  Google Scholar 

  20. Berglundh T, Abrahamsson I, Lang NP, Lindhe J. De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res. 2003;14:251–62.

    Article  Google Scholar 

  21. Salvi GE, Bosshardt DD, Lang NP, Abrahamsson I, Berglundh T, Lindhe J, Ivanovski S, Donos N. Temporal sequence of hard and soft tissue healing around titanium dental implants. Periodontol 2000. 2015;68(1):135–52.

    Article  Google Scholar 

  22. Bosshardt DD, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Lang NP. The role of bone debris in early healing adjacent to hydrophilic and hydrophobic implant surfaces in man. Clin Oral Implants Res. 2011;22:357–64.

    Article  Google Scholar 

  23. Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res. 2011;22:349–56.

    Article  Google Scholar 

  24. Morneburg TR, Proschel PA. In vivo forces on implants influenced by occlusal scheme and food consistency. Int J Prosthodont. 2003;16:481–6.

    PubMed  Google Scholar 

  25. Ozgur GO, Kazancioglu HO, Demirtas N, Deger S, Ak G. Risk factors associated with implant marginal bone loss: a retrospective 6-year follow-up study. Implant Dent. 2016;25(1):122–7.

    Article  Google Scholar 

  26. Horita S, Sugiura T, Yamamoto K, Murakami K, Imai Y, Kirita T. Biomechanical analysis of immediately loaded implants according to the "all-on-four" concept. J Prosthodont Res. 2017;61(2):123–32.

    Article  Google Scholar 

  27. Drago C. Cantilever lengths and anterior-posterior spreads of interim, acrylic resin, full-arch screw-retained prostheses and their relationship to prosthetic complications. J Prosthodont. 2017;26(6):502–7.

    Article  Google Scholar 

  28. Drago C. Frequency and type of prosthetic complications associated with interim, immediately loaded full-arch prostheses: a 2-year retrospective chart review. J Prosthodont. 2016;25(6):433–9.

    Article  Google Scholar 

  29. Romanos GE, Gupta B, Gaertner K, Nentwig GH. Distal cantilever in full-arch prostheses and immediate loading: a retrospective clinical study. Int J Oral Maxillofac Implants. 2014;29(2):427–31.

    Article  Google Scholar 

  30. Yamaguchi K, Ishiura Y, Tanaka S, Baba K. Influence of the rigidity of a provisional restoration supported on four immediately loaded implants in the edentulous maxilla on biomechanical bone-implant interactions under simulated bruxism conditions: a three-dimensional finite element analysis. Int J Prosthodont. 2014;27(5):442–50.

    Article  Google Scholar 

  31. Al Twal EQ, Chadwick RG. Fibre reinforcement of two temporary composite bridge materials–effect upon flexural properties. J Dent. 2012;40(12):1044–51.

    Article  Google Scholar 

  32. Kamble VD, Parkhedkar RD. In vitro comparative evaluation of the effect of two different fiber reinforcements on the fracture toughness of provisional restorative resins. Indian J Dent Res. 2012;23(2):140–4.

    Article  Google Scholar 

  33. Zuccari AG, Oshida Y, Moore BK. Reinforcement of acrylic resins for provisional fixed restorations. Part I: mechanical properties. Biomed Mater Eng. 1997;7(5):327–43.

    PubMed  Google Scholar 

  34. Heydecke G, Zwahlen M, Nicol A, Nisand D, Payer M, Renouard F, Grohmann P, Mühlemann S, Joda T. What is the optimal number of implants for fixed reconstructions: a systematic review. Clin Oral Implants Res. 2012;23(Suppl 6):217–28.

    Article  Google Scholar 

  35. Mericske-Stern R, Worni A. Optimal number of oral implants for fixed reconstructions: a review of the literature. Eur J Oral Implantol. 2014;7(Suppl 2):S133–53.

    PubMed  Google Scholar 

  36. Niedermaier R, Stelzle F, Riemann M, Bolz W, Schuh P, Wachtel H. Implant-supported immediately loaded fixed full-arch dentures: evaluation of implant survival rates in a case cohort of up to 7 years. Clin Implant Dent Relat Res. 2017;19(1):4–19.

    Article  Google Scholar 

  37. Maló P, Rangert B, Nobre M. "all-on-four" immediate-function concept with Brånemark system implants for completely edentulous mandibles: a retrospective clinical study. Clin Implant Dent Relat Res. 2003;5(Suppl 1):S2–9.

    Article  Google Scholar 

  38. Maló P, Rangert B, Nobre M. All-on-4 immediate-function concept with Brånemark system implants for completely edentulous maxillae: a 1-year retrospective clinical study. Clin Implant Dent Relat Res. 2005;7(Suppl 1):S88–94.

    Article  Google Scholar 

  39. Sagat G, Yalcin S, Gultekin BA, Mijiritsky E. Influence of arch shape and implant position on stress distribution around implants supporting fixed full-arch prosthesis in edentulous maxilla. Implant Dent. 2010;19(6):498–508.

    Article  Google Scholar 

  40. Francetti L, Cavalli N, Villa T, La Barbera L, Taschieri S, Corbella S, Del Fabbro M. Biomechanical in vitro evaluation of two full-arch rehabilitations supported by four or five implants. Int J Oral Maxillofac Implants. 2015;30(2):419–26.

    Article  Google Scholar 

  41. Kim KS, Kim YL, Bae JM, Cho HW. Biomechanical comparison of axial and tilted implants for mandibular full-arch fixed prostheses. Int J Oral Maxillofac Implants. 2011;26(5):976–84.

    PubMed  Google Scholar 

  42. Bellini CM, Romero D. Comparison of tilted versus nontilted implant-supported prosthetic design for the restoration of the edentulous mandible: a biomechanical study. Int J Oral Maxillofac Implants. 2000;24(3):511–7.

    Google Scholar 

  43. Fazi G, Tellini S, Vangi D, Branchi R. Three-dimensional finite element analysis of different implant configurations for a mandibular fixed prosthesis. Int J Oral Maxillofac Implants. 2011;26(4):752–9.

    PubMed  Google Scholar 

  44. Bevilacqua M, Tealdo T, Menini M, Pera F, Mossolov A, Drago C, Pera P. The influence of cantilever length and implant inclination on stress distribution in maxillary implant-supported fixed dentures. J Prosthet Dent. 2011;105(1):5–13.

    Article  Google Scholar 

  45. Chan MH, Holmes C. Contemporary "all-on-4" concept. Dent Clin N Am. 2015;59(2):421–70.

    Article  Google Scholar 

  46. Krekmanov L, Khan M, Rangert B, et al. Tilting of posterior mandibular and maxillary implants for improved prosthesis support. Int J Oral Maxillofac Implants. 2000;15:405–14.

    PubMed  Google Scholar 

  47. Butera C, Galindo DF, Jensen O. Mandibular all-on-four therapy using angled implants: a three year clinical study of 857 implants in 219 jaws. Dent Clin N Am. 2011;55:795–811.

    Article  Google Scholar 

  48. Testori T, Del Fabbro M, Capellini M, et al. Immediate occlusal loading and tilted implants for the rehabilitation of the atrophic edentulous maxilla: 1-year interim results of a multicenter prospective study. Clin Oral Implants Res. 2008;19:227–32.

    Article  Google Scholar 

  49. Francetti L, Agliardi E, Testori T, Romeo D, Taschieri S, Del Fabbro M. Immediate rehabilitation of the mandible with fixed full prosthesis supported by axial and tilted implants: interim results of a single cohort prospective study. Clin Implant Dent Relat Res. 2008;10(4):255–63.

    PubMed  Google Scholar 

  50. Calandriello R, Tomatis M. Simplified treatment of the atrophic posterior maxilla via immediate/early function and tilted implants: a prospective 1-year clinical study. Clin Implant Dent Relat Res. 2000;7:1–12.

    Article  Google Scholar 

  51. Saleh Saber F, Ghasemi S, Koodaryan R, Babaloo A, Abolfazli N. The comparison of stress distribution with different implant numbers and inclination angles in all-on four and conventional methods in maxilla: a finite element analysis. J Dent Res Dent Clin Dent Prospects. 2015;9(4):246–53.

    Article  Google Scholar 

  52. Malhotra AO, Padmanabhan TV, Mohamed K, Natarajan S, Elavia U. Load transfer in tilted implants with varying cantilever lengths in an all-on-four situation. Aust Dent J. 2012;57(4):440–5.

    Article  Google Scholar 

  53. Martini AP, Freitas AC Jr, Rocha EP, de Almeida EO, Anchieta RB, Kina S, Fasolo GB. Straight and angulated abutments in platform switching: influence of loading on bone stress by three dimensional finite element analysis. J Craniofac Surg. 2012;23(2):415–8.

    Article  Google Scholar 

  54. Phillips K, Wong KM. Vertical space requirement for the fixed-detachable, implant-supported prosthesis. Compend Contin Educ Dent. 2002;23(8):750–6.

    PubMed  Google Scholar 

  55. Tallgren A. The reduction in face height of edentulous and partially edentulous subjects during long term denture wear: a longitudinal roentgenographic cephalometric study. Acta Odontol Scand. 1966;24:195–239.

    Article  Google Scholar 

  56. Nunes M, Almeida RF, Felino AC, Malo P, de Araújo Nobre M. The influence of crown-to-implant ratio on short implant marginal bone loss. Int J Oral Maxillofac Implants. 2016;31(5):1156–63.

    Article  Google Scholar 

  57. Nissan J, Ghelfan O, Gross O, Priel I, Gross M, Chaushu G. The effect of crown/implant ratio and crown height space on stress distribution in unsplinted implant supporting restorations. J Oral Maxillofac Surg. 2011;69(7):1934–9.

    Article  Google Scholar 

  58. Birdi H, Schulte J, Kovacs A, Weed M, Chuang SK. Crown-to-implant ratios of short-length implants. J Oral Implantol. 2010;36(6):425–33.

    Article  Google Scholar 

  59. Romanos GE, Toh CG, Siar CH, Wicht H, Yacoob H, Nentwig GH. Bone-implant interface around titanium implants under different loading conditions: a histomorphometrical analysis in the Macaca Fascicularis monkey. J Periodontol. 2003;74(10):1483–90.

    Article  Google Scholar 

  60. Romanos GE, Toh CG, Siar CH, Swaminathan D. Histologic and histomorphometric evaluation of peri-implant bone subjected to immediate loading: an experimental study with Macaca Fascicularis. Int J Oral Maxillofac Implants. 2002;17(1):44–51.

    PubMed  Google Scholar 

  61. Romanos GE, Froum S, Hery C, Cho SC, Tarnow DP. Survival rate of immediately vs. delayed loaded implants: analysis of the literature. J Oral Implantol. 2010;36(4):315–24.

    Article  Google Scholar 

  62. Costa RS, Santos PA, Nary HF, Brånemark PI. Key biomechanical characteristics of complete-arch fixed mandibular prostheses supported by three implants developed at P-I Brånemark institute, Bauru. Int J Oral Maxillofac Implants. 2015;30(6):1400–4.

    Article  Google Scholar 

  63. Cannizzaro G, Loi I, Viola P, Ferri V, Leone M, Trullenque-Eriksson A, Esposito M. Immediate loading of two (fixed-on-2) versus three (fixed-on-3) implants placed flapless supporting cross-arch fixed prostheses: one-year results from a randomised controlled trial. Eur J Oral Implantol. 2016;9(Suppl 1(2)):143–53.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bobby Birdi D.M.D., M.Sc., F.R.C.D.(C) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Birdi, B., Jivraj, S., Majumdar, K. (2018). Scientific Basis of Immediate Loading and the Biomechanics of Graft-Less Solutions. In: Jivraj, S. (eds) Graftless Solutions for the Edentulous Patient. BDJ Clinician’s Guides. Springer, Cham. https://doi.org/10.1007/978-3-319-65858-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65858-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65857-5

  • Online ISBN: 978-3-319-65858-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics