Skip to main content

Biochemistry and Mechanism of Action of Collagenase on Collagen

  • Chapter
  • First Online:
Collagenase in Dupuytren Disease

Abstract

The collagen contents of the Dupuytren contracture lesions have been extensively studied.

Collagen type III is the predominant type of collagen in the early, nodular stages of the disease, while cords mostly contain highly cross-linked collagen type I. In Dupuytren contracture tissues, changes in transforming growth factor beta (TGF-β) signaling pathways promote collagen synthesis and the development of myofibroblasts. If an enzyme is to degrade the triple helix of collagen in the cord, it must first bind to sites on the triple helix, and subsequently unwind it, in order to then cleave one or more strands of the triple helix. Collagenase Clostridium histolyticum performs all three of these activities. Collagenase, after cord injection, is efficiently removed by a plasma protein known as α-2 macroglobulin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lanting R, Broekstra DC, Werker PM, van den Heuvel ER. A systematic review and meta-analysis on the prevalence of Dupupren disease in the genral population of Western countries. Plast Reconstr Surg. 2014;133(3):593–603.

    Article  CAS  PubMed  Google Scholar 

  2. Luck JV. Dupuytren’s contracture; a new concept of the pathogeneis correlated with surgical management. J Bone Joint Surg Am. 1959;41A(4):635–64.

    Article  Google Scholar 

  3. Brickley-Parsons D, Glimcher MJ, Smith RJ, Albin R, Adams JP. Biochemical changes in the collagen of the palmar fascia in patients with Dupuytren’s disease. J Bone Joint Surg Am. 1981;63(5):787–97.

    Article  CAS  PubMed  Google Scholar 

  4. Lam WL, Rawlins JM, Karoo RO, Naylor I, Sharpe DT. Re-visiting Luck’s classification: a histological analysis of Dupuytren’s disease. J Hand Surg Eur. 2010;35(4):312–7.

    Article  CAS  Google Scholar 

  5. Van Beuge MM, Ten Dam EJ, Werker PM, Bank RA. Matrix and cell phenotype differences in Dupuytren's disease. Fibrogenesis Tissue Repair. 2016;29(9):9–12.

    Article  CAS  Google Scholar 

  6. Baily AJ, Sims TJ, Gabbani G, Bazin SL, LeLous M. Collagen of Dupuytren’s disease. Clin Sci Mol Med. 1977;53(5):499–502.

    Google Scholar 

  7. Arkkilla PE, Koskinen PJ, Kantola IM, Ronnemaa T, Seppanen E, Viikari JS. Dupuytren’s disease in type I diabetic subjects: investigation of biochemical markers of type III and I collagen. Clin Exp Rheumatol. 2000;18(2):215–9.

    Google Scholar 

  8. Bazin S, LeLous M, Duance VC, Sims TJ, Bailey AJ, Gabbiani G, D’Andiran G, Pizzolato G, Browski A, Nicoletis C. Biochemistry and histology of the connective tissue of Dupuytren’s disease lesions. Eur J Clin Invest. 1980;10(1):9–16.

    Article  CAS  PubMed  Google Scholar 

  9. Bowley E, O’Gorman DB, Gan BS. Beta-catenin signaling in fibroproliferative disease. J Surg Res. 2007;138(1):141–50.

    Article  CAS  PubMed  Google Scholar 

  10. Montgomery E, Lee JH, Abraham SC, Wu TT. Superficial fibromatoses are genetically distinct from deep fibromatoses. Mod Pathol. 2001;14(7):695–701.

    Article  CAS  PubMed  Google Scholar 

  11. Alman BA, Li C, Pajerski ME, Diaz-Cano S, Wolfe HJ. Increased beta-catenin protein and somatic APC mutations in sporadic aggressive fibromatoses (desmoid tumors). Am J Pathol. 1997;151(2):329–34.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Nagase H, Miyoshi Y, Horii A, Aoki T, Petersen GM, Vogenstein B, Maher E, Ogawa M, Maruyama M, Utsumomiya J. Screening for germ-line mutations in familial adenomatous polyposis patients: 61 new patients and a summary of 150 unrelated patients. Hum Mutat. 1992;1(6):467–73.

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura Y, Nishisho I, Kinzler KW, Vogelstein B, Miyoshi Y, Miki Y, Ando H, Horii A. Mutations of the APC (adenomatous polyposis coli) gene in FAP (familial Polyposis coli) patients and in sporadic colorectal tumors. Tohoku J Exp Med. 1992;168(2):141–7.

    Article  CAS  PubMed  Google Scholar 

  14. Abraham SC, Reynolds C, Lee JH, Montgomery EA, Baisden BL, Krasinskas AM, Wu TT. Fibromatosis of the breast and mutations involving the APC/beta-catenin pathway. Hum Pathol. 2002;33(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  15. Tejpar S, Nollet F, Li C, Wunder JS, Michils G, dal Cin P, Van Cutsem E, Bapat B, van Roy F, Cassiman JJ. Predominance of beta-catenin mutations and beta-catenin dysregulation in sporadic aggressive fibromatosis (desmoid tumor). Oncogene. 1999;18(47):6615–20.

    Article  CAS  PubMed  Google Scholar 

  16. Badalamente MA, Sampson SP, Hurst LC, Dowd A, Miyasaka K. The role of transforming growth factor beta in Dupuytren’s disease. J Hand Surg [Am]. 1996;21(2):210–5.

    Article  CAS  Google Scholar 

  17. Berndt A, Kosmehl H, Mandel U, Gabler U, Luo X, Celeda D, Zardi L, Katenkamp D. TGF beta and bFGF synthesis and localization in Dupuytren’s disease (nodular palmar fibromatosis) relative to cellular activity, myofibroblast phenotype and oncofetal variants of fibronectin. Histochem J. 1995;27(12):1014–20.

    Article  CAS  PubMed  Google Scholar 

  18. Varallo VM, Gan BS, Seney S, Ross DC, Roth JH, Richards RS, McFarlane RM, Alman B, Howard JC. Beta-catenin expression in Dupuytren’s disease: potential role for cell-matrix interactions in modulating beta-catenin levels in vivo and in vitro. Oncogene. 2003;22(24):3680–4.

    Article  CAS  PubMed  Google Scholar 

  19. Vi L, Njarlangattil A, Wu Y, Gan BS, O’Gorman DB. Type 1 collagen differentially alters b-catenin accumulation in primary dupuytren’s disease cord and adjacent palmar fascia cells. BMC Musculoskelet Disord. 2009;10:72–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lauer-Fields JL, Juska D, Fields GB. Matrix metalloproteinases and collagen catabolism. Biopolymers. 2002;66:19–32.

    Article  CAS  PubMed  Google Scholar 

  21. Kono T. Purification and partial characterization of collagenolytic enzymes from Clostridium histolyticum. Biochemistry. 1968;7(3):1106–14.

    Article  CAS  PubMed  Google Scholar 

  22. Beekman B, Drijfhout JW, Ronday HK, TeKoppele JM. Fluorogenic MMP activity assay for plasma including MMPs complexed to alpha 2-macroglobulin. Ann N Y Acad Sci. 1999;878:150–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie A. Badalamente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Badalamente, M.A., Lamaris, G.A. (2018). Biochemistry and Mechanism of Action of Collagenase on Collagen. In: Pajardi, G., Badalamente, M., Hurst, L. (eds) Collagenase in Dupuytren Disease . Springer, Cham. https://doi.org/10.1007/978-3-319-65822-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65822-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65821-6

  • Online ISBN: 978-3-319-65822-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics