Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2201))

  • 575 Accesses

Abstract

In this section we collect some basic facts about stable forms, their orbits and their stabilisers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here G 0 is the identity component of a Lie group G. 

  2. 2.

    Please note that in our convention 2p refers to the negative directions.

  3. 3.

    As above 0 denotes the annihilator.

  4. 4.

    See for example [100, pp. 209–211] for the curvature of warped products.

  5. 5.

    In our convention m + 1 is the number of negative directions.

  6. 6.

    Note, that the frame bundle of a para-Kähler manifold can be reduced to the bundle of para-unitary frames \(P_{U(P_{0},g_{0})}\).

References

  1. D.V. Alekseevsky, V. Cortés, A.S. Galaev, T. Leistner, Cones over pseudo-Riemannian manifolds and their holonomy. J. Reine Angew. Math. 635, 23–69 (2009). doi:10.1515/CRELLE.2009.075. MR2572254 (2011b:53115)

    Google Scholar 

  2. D.V. Alekseevsky, K. Medori, A. Tomassini, Homogeneous para-Kählerian Einstein manifolds. Uspekhi Mat. Nauk 64(1)(385), 3–50 (2009). doi:10.1070/RM2009v064n01ABEH004591 (Russian, with Russian summary) English translation, Russian Math. Surv. 64(1), 1–43 (2009). MR2503094 (2010k:53068)

    Google Scholar 

  3. A.L. Besse, Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10 (Springer, Berlin, 1987). MR867684 (88f:53087)

    Google Scholar 

  4. C. Boyer, K. Galicki, Sasakian Geometry. Oxford Mathematical Monographs (Oxford University Press, Oxford, 2008). MR2382957 (2009c:53058)

    Google Scholar 

  5. E. Bonan, Sur des variétés riemanniennes à groupe d’holonomie G2ou spin (7). C. R. Acad. Sci. Paris Sér. A-B 262, A127–A129 (1966) [French]. MR0196668 (33 #4855)

    Google Scholar 

  6. R.L. Bryant, Metrics with exceptional holonomy. Ann. Math. (2) 126(3), 525–576 (1987). doi:10.2307/1971360. MR916718 (89b:53084)

    Google Scholar 

  7. B. Cappelletti-Montano, A. Carriazo, V. Martín-Molina, Sasaki-Einstein and paraSasaki-Einstein metrics from (κg μg-structures. J. Geom. Phys. 73, 20–36 (2013). doi:10.1016/j.geomphys.2013.05.001. MR3090100

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Chiossi, S. Salamon, The intrinsic torsion of SU(3) and G2structures, in Differential Geometry, Valencia, 2001 (World Scientific Publisher, River Edge, NJ, 2002), pp. 115–133. MR1922042 (2003g:53030)

    Google Scholar 

  9. V. Cortés, Odd Riemannian symmetric spaces associated to four-forms. Math. Scand. 98(2), 201–216 (2006). MR2243702 (2007f:53057)

    Google Scholar 

  10. V. Cortés, L. Schäfer, Flat nearly Kähler manifolds. Ann. Global Anal. Geom. 32(4), 379–389 (2007). doi:10.1007/s10455- 007-9068-6. MR2346224 (2009a:53048)

    Google Scholar 

  11. V. Cortés, L. Schäfer, Geometric structures on Lie groups with flat bi-invariant metric. J. Lie Theory 19(2), 423–437 (2009). MR2572138 (2010m:53104)

    Google Scholar 

  12. V. Cruceanu, P. Fortuny, P.M. Gadea, A survey on paracomplex geometry. Rocky Mt. J. Math. 26(1), 83–115 (1996). doi:10.1216/rmjm/1181072105. MR1386154 (97c:53112)

    Google Scholar 

  13. T. Friedrich, Der erste Eigenwert des Dirac-Operators einer kompakten, Riemannschen Mannigfaltigkeit nichtnega- tiver Skalarkrümmung. Math. Nachr. 97, 117–146 (1980) [German] MR600828 (82g:58088)

    Google Scholar 

  14. P.M. Gadea, J.M. Masque, Classification of almost para-Hermitian manifolds. Rend. Mat. Appl. (7) 11(2), 377–396 (1991) [English, with Italian summary]. MR1122346 (92i:53028)

    Google Scholar 

  15. A. Gray, L.M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. (4) 123, 35–58 (1980). doi: 10.1007/BF01796539. MR581924 (81m:53045)

    Google Scholar 

  16. F.R. Harvey, Spinors and Calibrations. Perspectives in Mathematics, vol. 9 (Academic, Boston, MA, 1990). MR1045637 (91e:53056)

    Google Scholar 

  17. N. Hitchin, The geometry of three-forms in six dimensions. J. Differ. Geom. 55(3), 547–576 (2000). MR1863733 (2002m:53070)

    Google Scholar 

  18. N. Hitchin, Stable forms and special metrics, (Bilbao, 2000). Contemporary Mathematics, vol. 288 (American Mathematical Society, Providence, RI, 2001), pp. 70–89. doi:10.1090/conm/288/04818. MR1871001 (2003f:53065)

    Google Scholar 

  19. G.R. Jensen, Imbeddings of Stiefel manifolds into Grassmannians. Duke Math. J. 42(3), 397–407 (1975). MR0375164 (51 #11360)

    Google Scholar 

  20. S. Kaneyuki, M. Kozai, Paracomplex structures and affine symmetric spaces. Tokyo J. Math. 8(1), 81–98 (1985). doi:10.3836/tjm/1270151571. MR800077 (87c:53078)

    Google Scholar 

  21. I. Kath, G -structures on pseudo-Riemannian manifolds. J. Geom. Phys. 27(3–4), 155–177 (1998). doi:10.1016/S0393-0440(97)00073-9. MR1645016 (99i:53023)

    Google Scholar 

  22. I. Kath, Killing Spinors on Pseudo-Riemannian Manifolds. Habilitationsschrift an der Humboldt-Universität zu Berlin (1999)

    Google Scholar 

  23. T. Kimura, Introduction to Prehomogeneous Vector Spaces. Translations of Mathematical Monographs, vol. 215 (American Mathematical Society, Providence, RI, 2003). Translated from the 1998 Japanese original by Makoto Nagura and Tsuyoshi Niitani and revised by the author. MR1944442 (2003k:11180)

    Google Scholar 

  24. T. Kimura, M. Sato, A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J. 65, 1–155 (1977). MR0430336 (55 #3341)

    Google Scholar 

  25. V.F. Kirichenko, Generalized Gray-Hervella classes and holomorphically projective transformations of gen- eralized almost Hermitian structures. Izv. Ross. Akad. Nauk Ser. Mat. 69(5), 107–132 (2005). doi: 10.1070/IM2005v069n05ABEH002283 (Russian, with Russian summary); English translation: Izv. Math. 69(5), 963–987 (2005). MR2179416 (2006g:53028)

    Google Scholar 

  26. S. Kobayashi, K. Nomizu, Foundations of Differential Geometry. Volume II. Interscience Tracts in Pure and Applied Mathematics, No. 15, vols. I/II (Interscience Publishers Wiley, New York/London/Sydney, 1963/1969)

    Google Scholar 

  27. B. O’Neill, Semi-Riemannian Geometry. Pure and Applied Mathematics, vol. 103 (Academic [Harcourt Brace Jovanovich Publishers], New York, 1983). With applications to relativity. MR719023 (85f:53002)

    Google Scholar 

  28. S. Salamon, Riemannian Geometry and Holonomy Groups. Pitman Research Notes in Mathematics Series, vol. 201 (Longman Scientific & Technical, Harlow, 1989); copublished in the United States with Wiley, New York, 1989. MR1004008 (90g:53058)

    Google Scholar 

  29. L. Schäfer, On the structure of nearly pseudo-Kähler manifolds. Monatsh. Math. 163(3), 339–371 (2011). doi:10.1007/s00605-009-0184-1. MR2805878 (2012m:53106)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schäfer, L. (2017). Preliminaries. In: Nearly Pseudo-Kähler Manifolds and Related Special Holonomies. Lecture Notes in Mathematics, vol 2201. Springer, Cham. https://doi.org/10.1007/978-3-319-65807-0_2

Download citation

Publish with us

Policies and ethics