Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2201))

  • 599 Accesses

Abstract

Following Hitchin [76], a k-form φ on a differentiable manifold M is called stable if the orbit of φ( p) under GL(T p M) is open in \(\Lambda ^{k}T_{p}^{{\ast}}M\) for all pM. In this text we are mainly concerned with six-dimensional manifolds M endowed with a stable two-form ω and a stable three-form ρ. A stable three-form defines an endomorphism field J ρ on M such that J ρ 2 = ɛid, see (2.6). We will assume the following algebraic compatibility equations between ω and ρ:

$$\displaystyle{\omega \wedge \rho = 0,\quad J_{\rho }^{{\ast}}\rho \wedge \rho = \frac{2} {3}\omega ^{3}.}$$

The pair (ω, ρ) defines an SU( p, q)-structure if ɛ = −1 and an \(\mathrm{SL}(3, \mathbb{R})\)-structure if ɛ = +1. In the former case, the pseudo-Riemannian metric ω( J ρ ⋅ , ⋅ ) has signature (2p, 2q). In the latter case it has signature (3, 3). The structure is called half-flat if the pair (ω, ρ) satisfies the following exterior differential system:

$$\displaystyle{d\omega ^{2} = 0,\quad d\rho = 0.}$$

In [76], Hitchin introduced the following evolution equations for a time-dependent pair of stable forms (ω(t), ρ(t)) evolving from a half-flat SU(3)-structure (ω(0), ρ(0)):

$$\displaystyle{ \frac{\partial } {\partial t}\rho = d\omega,\quad \frac{\partial } {\partial t}\hat{\omega } = d\hat{\rho },}$$

where \(\hat{\omega }= \frac{\omega ^{2}} {2}\) and \(\hat{\rho }= J_{\rho }^{{\ast}}\rho\). For compact manifolds M, he showed that these equations are the flow equations of a certain Hamiltonian system and that any solution defined on some interval \(0 \in I \subset \mathbb{R}\) defines a Riemannian metric on M × I with holonomy group in G2. We give a new proof of this theorem, which does not use the Hamiltonian system and does not assume that M is compact. Moreover, our proof yields a similar result for all three types of half-flat G-structures: G = SU(3), SU(1, 2) and \(\mathrm{SL}(3, \mathbb{R})\). For the noncompact groups G we obtain a pseudo-Riemannian metric of signature (3, 4) and holonomy group in G2 on M × I (see Theorem 4.1.3 of Chap. 4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Agricola, J. Höll, Cones of G manifolds and Killing spinors with skew torsion. Ann. Mat. Pura Appl. 194, 673–718 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. D.V. Alekseevsky, V. Cortés, Classification of stationary compact homogeneous special pseudo-Kähler manifolds of semisimple groups. Proc. Lond. Math. Soc. (3) 81(1), 211–230 (2000). doi: 10.1112/S0024611500012363. MR1758493 (2001h:53063)

    Google Scholar 

  3. D.V. Alekseevsky, V. Cortés, A.S. Galaev, T. Leistner, Cones over pseudo-Riemannian manifolds and their holonomy. J. Reine Angew. Math. 635, 23–69 (2009). doi:10.1515/CRELLE.2009.075. MR2572254 (2011b:53115)

    Google Scholar 

  4. C. Bär, Real Killing spinors and holonomy. Commun. Math. Phys. 154(3), 509–521 (1993). MR1224089 (94i:53042)

    Google Scholar 

  5. O. Baues, V. Cortés, Proper affine hyperspheres which fiber over projective special Kähler manifolds. Asian J. Math. 7(1), 115–132 (2003). MR2015244 (2005a:53076)

    Google Scholar 

  6. F. Belgun, A. Moroianu, Nearly Kähler 6-manifolds with reduced holonomy. Ann. Global Anal. Geom. 19(4), 307–319 (2001). doi:10.1023/A:1010799215310. MR1842572 (2002f:53083)

    Google Scholar 

  7. L. Bérard Bergery, A. Ikemakhen, Sur l’holonomie des variétés pseudo-riemanniennes de signature (nn). Bull. Soc. Math. France 125(1), 93–114 (1997) [French, with English and French summaries]. MR1459299 (98m:53087)

    Google Scholar 

  8. C. Boyer, K. Galicki, Sasakian Geometry. Oxford Mathematical Monographs (Oxford University Press, Oxford, 2008). MR2382957 (2009c:53058)

    Google Scholar 

  9. J.-B. Butruille, Classification des variétés approximativement kähleriennes homogénes. Ann. Global Anal. Geom. 27(3), 201–225 (2005). doi: 10.1007/s10455-005-1581-x (French, with English summary). MR2158165 (2006f:53060)

    Google Scholar 

  10. J.-B. Butruille, Homogeneous nearly Kähler manifolds, in Handbook of Pseudo-Riemannian Geometry and Supersymmetry. IRMA Lectures in Mathematics and Theoretical Physics, vol. 16 (European Mathematical Society, Zürich, 2010), pp. 399–423, doi: 10.4171/079-1/11. MR2681596 (2011m:53083)

    Google Scholar 

  11. S. Cecotti, C. Vafa, Topological-anti-topological fusion. Nucl. Phys. B 367(2), 359–461 (1991). doi:10.1016/0550-3213(91)90021-O. MR1139739 (93a:81168)

    Google Scholar 

  12. R. Cleyton, A. Swann, Einstein metrics via intrinsic or parallel torsion. Math. Z. 247(3), 513–528 (2004). doi:10.1007/s00209-003-0616-x. MR2114426 (2005i:53054)

    Google Scholar 

  13. D. Conti, T.B. Madsen, The odd side of torsion geometry. Ann. Mat. Pura Appl. (4) 193(4), 1041–1067 (2014). doi:10.1007/s10231-012-0314-6. MR3237915

    Google Scholar 

  14. D. Conti, S. Salamon, Generalized Killing spinors in dimension 5. Trans. Am. Math. Soc. 359(11), 5319–5343 (2007). doi: 10.1090/S0002-9947-07-04307-3. MR2327032 (2008h:53077)

    Google Scholar 

  15. V. Cortés, L. Schäfer, Topological-antitopological fusion equations, pluriharmonic maps and special Kähler mani- folds. Progress in Mathematics, vol. 234 (Birkhäuser Boston, Boston, MA, 2005), pp. 59–74

    Google Scholar 

  16. V. Cortés, L. Schäfer, Differential geometric aspects of the tt-equations, in From Hodge Theory to Integrability and TQFT tt*-Geometry. Proceedings of Symposia in Pure Mathematics, vol. 78 (American Mathematical Society, Providence, RI, 2008), pp. 75–86. doi: 10.1090/pspum/078/2483749. MR2483749 (2010f:53103)

    Google Scholar 

  17. B. Dubrovin, Geometry and integrability of topological-antitopological fusion. Commun. Math. Phys. 152(3), 539–564 (1993). MR1213301 (95a:81227)

    Google Scholar 

  18. M.J. Duff, B.E.W. Nilsson, C.N. Pope, Kaluza-Klein supergravity. Phys. Rep. 130(1–2), 1–142 (1986). doi:10.1016/0370-1573(86)90163-8. MR822171 (87f:83061)

    Google Scholar 

  19. M. Fernández, S. Ivanov, V. Muñoz, L. Ugarte, Nearly hypo structures and compact nearly Kähler 6-manifolds with conical singularities. J. Lond. Math. Soc. (2) 78(3), 580–604 (2008). doi:10.1112/jlms/jdn044. MR2456893 (2009m:53061)

    Google Scholar 

  20. L. Foscolo, M. Haskins, New G2holonomy cones and exotic nearly Kaehler structures on the 6-sphere and the product of a pair of 3-spheres. arXiv:1501.07838. https://spiral.imperial.ac.uk:8443/handle/10044/1/49672

  21. T. Friedrich, S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math. 6(2), 303–335 (2002). MR1928632 (2003m:53070)

    Google Scholar 

  22. P.M. Gadea, J.M. Masque, Classification of almost para-Hermitian manifolds. Rend. Mat. Appl. (7) 11(2), 377–396 (1991) [English, with Italian summary]. MR1122346 (92i:53028)

    Google Scholar 

  23. S. Gallot, Équations différentielles caractéristiques de la sphére. Ann. Sci. École Norm. Sup. (4) 12(2), 235–267 (1979). (French). MR543217 (80h:58051)

    Google Scholar 

  24. R. Gover, R. Panai, T. Willse, Nearly Kähler geometry and (2 3 5)-distributions via projective holonomy (2014). arxiv:1403.1959

    Google Scholar 

  25. A. Gray, Minimal varieties and almost Hermitian submanifolds. Mich. Math. J. 12, 273–287 (1965). MR0184185 (32 #1658)

    Google Scholar 

  26. A. Gray, Vector cross products on manifolds. Trans. Am. Math. Soc. 141, 465–504 (1969). MR0243469 (39 #4790)

    Google Scholar 

  27. A. Gray, Almost complex submanifolds of the six sphere. Proc. Am. Math. Soc. 20, 277–279 (1969). MR0246332 (39 #7636)

    Google Scholar 

  28. A. Gray, Riemannian manifolds with geodesic symmetries of order 3. J. Differ. Geom. 7, 343–369 (1972). MR0331281 (48 #9615)

    Google Scholar 

  29. A. Gray, The structure of nearly Kähler manifolds. Math. Ann. 223(3), 233–248 (1976). MR0417965 (54 #6010)

    Google Scholar 

  30. A. Gray, L.M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. (4) 123, 35–58 (1980). doi: 10.1007/BF01796539. MR581924 (81m:53045)

    Google Scholar 

  31. R. Grunewald, Six-dimensional Riemannian manifolds with a real Killing spinor. Ann. Global Anal. Geom. 8(1), 43–59 (1990). doi: 10.1007/BF00055017. MR1075238 (92a:58146)

    Google Scholar 

  32. C. Hertling, ttgeometry, Frobenius manifolds, their connections, and the construction for singularities. J. Reine Angew. Math. 555, 77–161 (2003). doi: 10.1515/crll.2003.015. MR1956595 (2005f:32049)

    Google Scholar 

  33. N. Hitchin, Stable forms and special metrics, (Bilbao, 2000). Contemporary Mathematics, vol. 288 (American Mathematical Society, Providence, RI, 2001), pp. 70–89. doi:10.1090/conm/288/04818. MR1871001 (2003f:53065)

    Google Scholar 

  34. S. Ivanov, S. Zamkovoy, Parahermitian and paraquaternionic manifolds. Differ. Geom. Appl. 23(2), 205–234 (2005). doi: 10.1016/j.difgeo.2005.06.002. MR2158044 (2006d:53025)

    Google Scholar 

  35. I. Kath, G -structures on pseudo-Riemannian manifolds. J. Geom. Phys. 27(3–4), 155–177 (1998). doi:10.1016/S0393-0440(97)00073-9. MR1645016 (99i:53023)

    Google Scholar 

  36. I. Kath, Killing Spinors on Pseudo-Riemannian Manifolds. Habilitationsschrift an der Humboldt-Universität zu Berlin (1999)

    Google Scholar 

  37. V.F. Kirichenko, Generalized Gray-Hervella classes and holomorphically projective transformations of gen- eralized almost Hermitian structures. Izv. Ross. Akad. Nauk Ser. Mat. 69(5), 107–132 (2005). doi: 10.1070/IM2005v069n05ABEH002283 (Russian, with Russian summary); English translation: Izv. Math. 69(5), 963–987 (2005). MR2179416 (2006g:53028)

    Google Scholar 

  38. A.J. Ledger, M. Obata, Affine and Riemannian s-manifolds. J. Differ. Geom. 2, 451–459 (1968). MR0244893 (39 #6206)

    Google Scholar 

  39. P.-A. Nagy, On nearly-Kähler geometry. Ann. Global Anal. Geom. 22(2), 167–178 (2002). doi:10.1023/A:1019506730571. MR1923275 (2003g:53073)

    Google Scholar 

  40. P.-A. Nagy, Nearly Kähler geometry and Riemannian foliations. Asian J. Math. 6(3), 481–504 (2002). MR1946344 (2003m:53043)

    Google Scholar 

  41. F. Raymond, A.T. Vasquez, 3-manifolds whose universal coverings are Lie groups. Topol. Appl. 12(2), 161–179 (1981). doi: 10.1016/0166-8641(81)90018-3. MR612013 (82i:57011)

    Google Scholar 

  42. R. Reyes Carrión, Some special geometries defined by Lie groups. PhD-thesis, Oxford (1993)

    Google Scholar 

  43. L. Schäfer, tt-bundles in para-complex geometry, special para-Kähler manifolds and para-pluriharmonic maps. Differ. Geom. Appl. 24(1), 60–89 (2006). doi:10.1016/j.difgeo.2005.07.001. MR2193748 (2007c:53080)

    Google Scholar 

  44. L. Schäfer, tt-geometry on the tangent bundle of an almost complex manifold. J. Geom. Phys. 57(3), 999–1014 (2007). doi:10.1016/j.geomphys.2006.08.004. MR2275206 (2007m:53023)

    Google Scholar 

  45. S. Stock, Lifting SU(3)-structures to nearly parallel G2-structures, J. Geom. Phys. 59(1), 1–7 (2009). doi: 10.1016/j.geomphys.2008.08.003. MR2479256 (2010b:53049)

    Google Scholar 

  46. A. Strominger, Superstrings with torsion. Nucl. Phys. B 274(2), 253–284 (1986). doi: 10.1016/0550- 3213(86)90286-5. MR851702 (87m:81177)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schäfer, L. (2017). Introduction. In: Nearly Pseudo-Kähler Manifolds and Related Special Holonomies. Lecture Notes in Mathematics, vol 2201. Springer, Cham. https://doi.org/10.1007/978-3-319-65807-0_1

Download citation

Publish with us

Policies and ethics