Skip to main content

Normative Ranges of Transcranial Doppler Metrics

  • Conference paper
  • First Online:
Intracranial Pressure & Neuromonitoring XVI

Abstract

Objective: To determine normal ranges for traditional transcranial Doppler (TCD) measurements for two age groups (14–19 and 20–29 years) and compare to existing literature results. The development of a normal range for TCD measurements will be required for the development of diagnostic and prognostic tests in the future.

Materials and Methods: We performed TCD on the middle cerebral artery on 147 healthy subjects aged 18.9 years (SD = 2.1) and calculated mean cerebral blood flow velocity (mCBFV) and pulsatility index (PI). The study population was divided into two age populations (14–19 and 20–29 years).

Results: There was a significant decrease in PI (p = 0.015) for the older age group with no difference in mCBFV.

Conclusion: Age-related, normal data are a prerequisite for TCD to continue to gain clinical acceptance. Our correlation of age-related TCD findings with previously published results as the generally accepted “gold standard” underlines the validity and sensitivity of this ultrasound method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57(6):769–74.

    Article  CAS  PubMed  Google Scholar 

  2. Rasulo FA, De Peri E, Lavinio A. Transcranial Doppler ultrasonography in intensive care. Eur J Anaesthesiol Suppl. 2008;42:167–73.

    Article  CAS  PubMed  Google Scholar 

  3. Nichols FT, Jones AM, Adams RJ. Stroke prevention in sickle cell disease (STOP) study guidelines for transcranial Doppler testing. J Neuroimaging. 2001;11(4):354–62.

    Article  CAS  PubMed  Google Scholar 

  4. Pavlakis SG, Rees RC, Huang X, Brown RC, Casella JF, Iyer RV, Kalpatthi R, Luden J, Miller ST, Rogers ZR, Thornburg CD, Wang WC, Adams RJ, Investigators BH. Transcranial doppler ultrasonography (TCD) in infants with sickle cell anemia: baseline data from the BABY HUG trial. Pediatr Blood Cancer. 2010;54(2):256–9.

    PubMed  PubMed Central  Google Scholar 

  5. Krejza J, Chen R, Romanowicz G, Kwiatkowski JL, Ichord R, Arkuszewski M, Zimmerman R, Ohene-Frempong K, Desiderio L, Melhem ER. Sickle cell disease and transcranial Doppler imaging: inter-hemispheric differences in blood flow Doppler parameters. Stroke. 2011;42(1):81–6.

    Article  PubMed  Google Scholar 

  6. Tegeler CH, Crutchfield K, Katsnelson M, Kim J, Tang R, Griffin LP, Rundek T, Evans G. Transcranial Doppler velocities in a large, healthy population. J Neuroimaging. 2013;23(3):466–72.

    Article  PubMed  Google Scholar 

  7. North American Academy of Neurology. Assessment of transcranial Doppler ultrasonography. AAN guideline summary for clinicians assessment, 2007. Chicago, IL: North American Academy of Neurology; 2007. https://www.aan.com/Guidelines/home/GetGuidelineContent/147

    Google Scholar 

  8. Bode H, Wais U. Age dependence of flow velocities in basal cerebral arteries. Arch Dis Child. 1988;63(6):606–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moppett IK, Mahajan RP. Transcranial Doppler ultrasonography in anaesthesia and intensive care. Br J Anaesth. 2004;93(5):710–24.

    Article  CAS  PubMed  Google Scholar 

  10. Ringelstein EB, Kahlscheuer B, Niggemeyer E, Otis SM. Transcranial doppler sonography: anatomical landmarks and normal velocity values. Ultrasound Med Biol. 1990;16(8):745–61.

    Article  CAS  PubMed  Google Scholar 

  11. Grolimund P, Seiler RW. Age dependence of the flow velocity in the basal cerebral arteries—a transcranial Doppler ultrasound study. Ultrasound Med Biol. 1988;14(3):191–8.

    Article  CAS  PubMed  Google Scholar 

  12. Demirkaya S, Uluc K, Bek S, Vural O. Normal blood flow velocities of basal cerebral arteries decrease with advancing age: a transcranial Doppler sonography study. Tohoku J Exp Med. Feb. 2008;214(2):145–9.

    Article  PubMed  Google Scholar 

  13. Hennerici M, Rautenberg W, Schwartz A. Transcranial Doppler ultrasound for the assessment of intracranial arterial flow velocity—part 2. Evaluation of intracranial arterial disease. Surg Neurol. 1987;27(6):523–32.

    Article  CAS  PubMed  Google Scholar 

  14. Khoja W, “Transcranial Doppler made easy,” first Saudi transcranial Doppler workshop, 2012. [Online]. http://ssa.org.sa/TCD Pocket Guide/Front Cover.htm. Accessed 2 Sept 2017.

  15. Baumgartner RW. Handbook on neurovascular ultrasound. Berlin: Karger; 2006.

    Book  Google Scholar 

  16. Nicoletto HA, Burkman MH. Transcranial Doppler series part II: performing a transcranial Doppler. Am J Electroneurodiagnostic Technol. Mar. 2009;49(1):14–27.

    PubMed  Google Scholar 

  17. Droste DW, Harders AG, Rastogi E. A transcranial Doppler study of blood flow velocity in the middle cerebral arteries performed at rest and during mental activities. Stroke. 1989;20(8):1005–11.

    Article  CAS  PubMed  Google Scholar 

  18. Patel PM, Drummond JC. Cerebral physiology and the effects of anesthetic drugs. In:Miller’s Anesthesia. 7th ed. New York, NY: Churchill Livingstone; 2009. p. 305–40.

    Google Scholar 

  19. Shahlaie K, Keachie K, Hutchins IM, Rudisill N, Madden LK, Smith KA, Ko KA, Latchaw RE, Muizelaar JP. Risk factors for posttraumatic vasospasm. J Neurosurg. 2011;115(3):602–11.

    Article  PubMed  Google Scholar 

  20. Arnolds BJ, von Reutern GM. Transcranial Doppler sonography. Examination technique and normal reference values. Ultrasound Med Biol. 1986;12(2):115–23.

    Article  CAS  PubMed  Google Scholar 

  21. Naqvi J, Yap KH, Ahmad G, Ghosh J, Naqvi J, Yap KH, Ahmad G, Ghosh J. Transcranial Doppler ultrasound: a review of the physical principles and major applications in critical care. Int J Vasc Med. 2013;2013:629378.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported partially by the National Institutes of Health Small Business Innovation Research (NINDS 1R43NS092209-01) and private funds from Neural Analytics Inc.

Conflicts of interest statement

Solventa Krakauskaite – No Conflict of interest, Corey Thibeault – Employee and shareholder of Neural Analytics, James LaVangie – Employee and shareholder of Neural Analytics, Mateo Scheidt – Employee and shareholder of Neural Analytics, Leo Martinez – Employee and shareholder of Neural Analytics, Danielle Seth-Hunter – Employee and shareholder of Neural Analytics, Amanda Wu – Employee and shareholder of Neural Analytics, Michael O’Brien – Employee and shareholder of Neural Analytics, Fabien Scalzo – Contractor and shareholder of Neural Analytics, Seth J.Wilk – Employee and shareholder of Neural Analytics, Robert B. Hamilton – Employee and shareholder of Neural Analytics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Hamilton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krakauskaite, S. et al. (2018). Normative Ranges of Transcranial Doppler Metrics. In: Heldt, T. (eds) Intracranial Pressure & Neuromonitoring XVI. Acta Neurochirurgica Supplement, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-319-65798-1_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65798-1_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65797-4

  • Online ISBN: 978-3-319-65798-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics