Advertisement

Local Stresses in Elastic Fibrous Composites

  • Igor V. AndrianovEmail author
  • Jan AwrejcewiczEmail author
  • Vladyslav V. DanishevskyyEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 77)

Abstract

Contemporary composite materials are widely used in modern engineering.

References

  1. 1.
    Kosmodamianskii, A.S. 1966. Stress state of a plate with strongly anisotropy weakened by two elliptical openings. Soviet Applied Mechanics 11 (1): 59–65.Google Scholar
  2. 2.
    Kosmodamianskii, A.S. (1976). The stressed state of anisotropic medias with holes or cavities. Kiev–Donetzk (in Russian): Visha Schkola.Google Scholar
  3. 3.
    Manevitch, L.I., A.V. Pavlenko, and S.G. Koblik. 1979. Asymptotic methods in the theory of elasticity of orthotropic body. Kiev–Donetzk (in Russian): Visha Schkola.Google Scholar
  4. 4.
    Everstine, G.C., and A.C. Pipkin. 1971. Stress channeling in transversely isotropic elastic composites. Zeitschrift für Angewandte Mathematik und Physik 22 (5): 825–834.CrossRefzbMATHGoogle Scholar
  5. 5.
    Spencer, A.J.M. 1965. A theory of the failure of ductile materials reinforced by elastic fibres. International Journal of Mechanical Sciences 7: 197–209.CrossRefGoogle Scholar
  6. 6.
    Spencer, A.J.M. 1974. Boundary layers in highly anisotropic plane elasticity. International Journal of Solids and Structures 10 (10): 1103–1123.CrossRefzbMATHGoogle Scholar
  7. 7.
    Christensen, R.M. 2005. Mechanics of composite materials. Mineola, NY: Dover Publications.Google Scholar
  8. 8.
    Andrianov, I.V., J. Awrejcewicz, and L.I. Manevitch. 2004. Asymptotical mechanics of thin-walled structures: A handbook. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  9. 9.
    Bogan, Yu.A. 1981. Second boundary value problem of the theory of elasticity for a significantly anisotropic plate with an elliptic hole. Soviet Applied Mechanics 17 (9): 821–825.Google Scholar
  10. 10.
    Bogan, Yu.A. 1994. Distribution of stresses in elastic strongly anisotropic materials. Journal of Applied Mechanics and Technical Physics 35 (3): 476–480.Google Scholar
  11. 11.
    Manevitch, L.I., and A.V. Pavlenko. 1975. Transmission of a dynamic load by a longitudinal stiffener on an elastic orthotropic plate. Mechanics of Solids 10 (2): 100–106.Google Scholar
  12. 12.
    Manevitch, L.I., and A.V. Pavlenko. 1982. Taking into account the structural inhomogeneity of a composite material in estimating adhesive strength. Journal of Applied Mechanics and Technical Physics 23 (3): 434–439.CrossRefGoogle Scholar
  13. 13.
    Melan, E. 1932. Ein Beitrag zur Theorie geschweisster Verbindungen. Ingenieur-Archive 3: 123–129.CrossRefzbMATHGoogle Scholar
  14. 14.
    Muki, R., and E. Sternberg. 1969. On the diffusion of an axial load from an infinite cylindrical bar embedded in an elastic medium. International Journal of Solids and Structures 5: 587–605.CrossRefzbMATHGoogle Scholar
  15. 15.
    Abramowitz, M., and I.A. Stegun (eds.). 1965. Handbook of mathematical functions, with formulas, graphs, and mathematical tables. New York: Dover Publications.zbMATHGoogle Scholar
  16. 16.
    Koiter, W.T. 1955. On the diffusion of load from a stiffener into a sheet. The Quarterly Journal of Mechanics and Applied Mathematics 8: 164–178.CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Grigolyuk, E.I., and V.M. Tolkachev. 1987. Contact problems in the theory of plates and shells. Moscow: Mir.zbMATHGoogle Scholar
  18. 18.
    Buell, E.L. 1948. On the distribution of plane stress in a semi-infinite plate with partially stiffened edge. Journal of Mathematical Physics 26: 223–233.CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Brown, E.H. 1957. The diffusion of load from a stiffener into an infinite elastic sheet. Proceedings of the Royal Society of London A: Mathematical and Physical Sciences 239:296–310.Google Scholar
  20. 20.
    Kalandiia, A.I. 1969. Stress conditions in plates reinforced by stiffening ribs. Journal of Applied Mathematics and Mechanics 33 (3): 523–529.CrossRefGoogle Scholar
  21. 21.
    Benscoter, S. 1949. Analysis of a single stiffener on an infinite sheet. Journal of Applied Mechanics 16: 242–246.zbMATHMathSciNetGoogle Scholar
  22. 22.
    Erdogan, F., and G.D. Gupta. 1971. The problem of an elastic stiffener bonded to a half plane. Journal of Applied Mechanics 38: 937–941.CrossRefzbMATHGoogle Scholar
  23. 23.
    Reissner, E. 1940. Note on the problem of the distribution of stress in a thin stiffened elastic sheet. Proceedings of Science of the United States of America 26: 300–305.Google Scholar
  24. 24.
    Muki, R., and E. Sternberg. 1967. Transfer of load from an edge stiffener to a sheet–a reconsideration of Melan’s problem. Journal of Applied Mechanics 34: 679–686.Google Scholar
  25. 25.
    Bufler, H. 1964. Zur Krafteinleitung in Scheiben über geschweisste oder geklebte Verbindungen. Österreich Ingenieur-Archive 18 (34): 284–292.Google Scholar
  26. 26.
    Sternberg, E. (1970). Load-transfer and load-diffusion in elastostatics. In Proceedings of the 6th US national congress on applied mechanics 34–61.Google Scholar
  27. 27.
    Shield, T.W., and K.S. Kim. 1992. Beam theory models for thin film segments cohesively bonded to an elastic half plane. International Journal of Solids and Structures 29: 1085–1103.CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Goodier, J.N., and C.S. Hsu. 1954. Transmissions of tension from a bar to a plate. Journal of Applied Mechanics 21: 147–150.Google Scholar
  29. 29.
    Grilitskii, D.V., and G.T. Sulim. 1975. Problem with periodicity for a piecewise homogeneous elastic flat plate with narrow elastic inclusions. Soviet Applied Mechanics 11 (1): 59–65.Google Scholar
  30. 30.
    Grilitskii, D.V., and G.T. Sulim. 1975. Periodical problem for an elastic plane with thin-walled inclusions. Journal of Applied Mathematics and Mechanics 39 (3): 520–529.Google Scholar
  31. 31.
    Sulim, G.T., and D.V. Grilitskii. 1972. Deformed state of piecewise homogeneous surface with thin-walled inclusions of finite length. Soviet Applied Mechanics 8 (11): 1219–1224.CrossRefGoogle Scholar
  32. 32.
    Sulim, G.T. 1981. Stress concentration near to thin-walled linear inclusions. Soviet Applied Mechanics 17 (11): 1011–1017.CrossRefzbMATHGoogle Scholar
  33. 33.
    Sulim, G.T. 1983. Elastic equilibrium of a half-plane with a system of linear inclusions. Soviet Applied Mechanics 19 (2): 173–177.CrossRefzbMATHGoogle Scholar
  34. 34.
    Grilitskii, D.V., A.A. Evtushenko, and G.T. Sulim. 1979. Stress distribution in a strip with a thin elastic inclusions. Journal of Applied Mathematics and Mechanics 43 (3): 542–549.CrossRefGoogle Scholar
  35. 35.
    Antipov, Y.A., and N.Kh. Arutyunyan. 1993. A contact problem with friction and adhesion for an elastic layer with stiffeners. Journal of Applied Mathematics and Mechanics 57 (1): 159–170.Google Scholar
  36. 36.
    Bardzokas, D.I., and G.I. Sfyris. 2005. Conditions of cracking of a stringer. Mathematical Problems in Engineering 3: 377–389.CrossRefzbMATHGoogle Scholar
  37. 37.
    Nuller, B.M. 1975. Contact problems for bar-reinforced strips and rectangular plates. Journal of Applied Mathematics and Mechanics 39 (3): 534–539.CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Vorob’ev, V.L., and G.Ia. Popov. 1970. Contact problem for an elastic half-plane and a semi-infinite elastic rod adhering to it. Journal of Applied Mathematics and Mechanics 34 (2): 335–341.Google Scholar
  39. 39.
    Alexandrov, V.M., and S.M. Mkhitaryan. 1983. Contact problems for bodies with thin coatings and inclusions. Moscow: Nauka.Google Scholar
  40. 40.
    Antipov, Y.A. 1993. An efficient solution of Prandl-type integrodifferential equations in a section and its application to contact problem for a strip. Journal of Applied Mathematics and Mechanics 57 (3): 547–556.CrossRefMathSciNetGoogle Scholar
  41. 41.
    Arutyunyan, N.Kh. 1968. Contact problem for a half-plane with elastic reinforcement. Journal of Applied Mathematics and Mechanics 32 (4): 632–646.Google Scholar
  42. 42.
    Morar, G.A., and G.Ia. Popov. 1970. On the contact problem for a half-plane with finite elastic reinforcement. Journal of Applied Mathematics and Mechanics 34 (3): 389–399.Google Scholar
  43. 43.
    Andrianov, I.V., and L.I. Manevitch. 1975. Calculation of the strain-stress state of orthotropic strip, stiffened by ribs. Mechanics of Solids 10 (4): 125–129.Google Scholar
  44. 44.
    Dollar, A., and P.S. Steif. 1988. Load transfer in composites with a Coulomb friction interface. International Journal of Solids and Structures 24: 789–803.CrossRefGoogle Scholar
  45. 45.
    Antipov, Y.A. 1996. A delaminated inclusion in the case of adhesion and slippage. Journal of Applied Mathematics and Mechanics 60 (4): 665–675.CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Antipov, Y.A., A.B. Movchan, and N.V. Movchan. 2000. Frictional contact of fibre and an elastic solid. Journal of Mechanics and Physics of Solids 48: 1413–1439.CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Lenci, S. 2000. Melan’s problems with weak interface. Journal of Applied Mechanics 67: 22–28.CrossRefzbMATHGoogle Scholar
  48. 48.
    Prudnikov, A.P., Yu.A. Brichkov, and O.I. Marichev. 1986. Integrals and series, vol. 1. Elementary Functions. New York: Gordon and Breach.Google Scholar
  49. 49.
    Parton, V.Z., and P.I. Perlin. 1984. Mathematical methods in the theory of elasticity. Moscow: Mir.zbMATHGoogle Scholar
  50. 50.
    Muki, R., and E. Sternberg. 1968. On the diffusion of load from a transversal tension-bar into semi-infinite elastic sheet. Journal of Applied Mechanics 35 (12): 737–746.CrossRefzbMATHGoogle Scholar
  51. 51.
    Tikhonenko, L.Ya. 1984. On singularity in the solution of a problem for an elastic half-plane with a rod emerging orthogonally on the boundary. Journal of Applied Mathematics and Mechanics 48 (3): 328–331.CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    Muki, R., and E. Sternberg. 1970. Load-transfer to a half-space from a partially embedded axially loaded rod. International Journal of Solids and Structures 6: 69–90.CrossRefzbMATHGoogle Scholar
  53. 53.
    Muki, R., and E. Sternberg. 1971. Load-absorption by a discontinuous filament in a fibre-reinforced composite. ZAMM 22: 809–824.CrossRefzbMATHGoogle Scholar
  54. 54.
    Cox, H.I. 1952. The elasticity and strength of a paper and other fibrous materials. British Journal of Applied Physics 3: 72–79.CrossRefGoogle Scholar
  55. 55.
    Golland, M., and E. Reissner. 1944. The stresses in cemented joints. Journal of Applied Mechanics 11: A17–A27.Google Scholar
  56. 56.
    Geymonat, G., F. Krasucki, and S. Lenci. 1999. Mathematical analysis of a bonded joint with a soft thin adhesive. Mathematics and Mechanics of Solids 4: 201–225.CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    Lenci, S. 1999. Bonded joints with nonhomogeneous adhesives. Journal of Elasticity 53: 23–35.CrossRefzbMATHMathSciNetGoogle Scholar
  58. 58.
    Kantorovich, L.V., and V.I. Krylov. 1958. Approximate methods of higher analysis. Groningen: Noordhoff.zbMATHGoogle Scholar
  59. 59.
    Aveston, J., Cooper, G.A. and Kelly, A. 1971. Single and multiple fracture. In: The properties of fibre composites. Proceedings of the conference of the national physics laboratory. IPC Sc. and Tech. Press Ltd, London, pp. 15–24.Google Scholar
  60. 60.
    Aveston, J., and A. Kelly. 1973. Theory of multiple fracture of fibrous composites. Journal of Material Sciences 8 (3): 352–362.CrossRefGoogle Scholar
  61. 61.
    Salvadurai, A.P.S., and R.K.N.D. Rajapakse. 1985. On the load transfer from a rigid cylindrical inclusion into an elastic half-space. International Journal of Solids and Structures 21 (12): 1213–1229.CrossRefGoogle Scholar
  62. 62.
    Sahimi, M. 2003. Heterogeneous materials. New York: Springer.zbMATHGoogle Scholar
  63. 63.
    Freund, L.B. 1992. The axial force needed to slide a circular fibre along a hole in an elastic material and implications for fibre pull-out. European Journal of Mechanics A/Solids 11 (1): 1–19.Google Scholar
  64. 64.
    Eshelby, J.D. 1982. The stresses on and in a thin inextensible fibre in a stretched elastic medium. Engineering Fracture Mechanics 16 (3): 453–455.CrossRefGoogle Scholar
  65. 65.
    Argatov, I.I., and S.A. Nazarov. 1993. Junction problem of shashlik (skewer) type. Comptes rendus de l’Acadèmie des sciences 1316: 1329–1334.zbMATHMathSciNetGoogle Scholar
  66. 66.
    Argatov, I.I., and S.A. Nazarov. 1996. Asymptotic analysis of problems on junctions of domains of different limit dimensions. A body pierced by a thin rod. Izvestiya Mathematics 60 (1): 1–37.Google Scholar
  67. 67.
    Argatov, I.I., and S.A. Nazarov. 1999. Equilibrium of an elastic body pierced by horizontal thin elastic rod. Journal of Applied Mechanics and Technical Physics 40 (4): 763–769.CrossRefzbMATHGoogle Scholar
  68. 68.
    Nikishkov, G.P., and G.P. Cherepanov. 1984. Extension of an elastic space with an isolated stiff rod. Journal of Applied Mathematics and Mechanics 48 (5): 332–335.CrossRefzbMATHGoogle Scholar
  69. 69.
    Phan-Thien, N., G. Pantelis, and M.B. Bush. 1982. On the elastic fibre pull-out problem: asymptotic and numerical results. Zeitschrift für Angewandte Mathematik und Physik 33: 251–264.CrossRefzbMATHGoogle Scholar
  70. 70.
    Phan-Thien, N., and S. Kim. 1994. Microstructures in elastic media: principles and computational methods. New York: Oxford University Press.zbMATHGoogle Scholar
  71. 71.
    Alexandrov, V.M., G.P. Alexandrova, and Yu.P. Stepanenko. 1981. The problem of taking into account the scale factor in the mechanics of a solid deformed body. Journal of Applied Mechanics and Technical Physics 22 (1): 128–133.Google Scholar
  72. 72.
    Kovalenko, E.V. 2001. Contact problems for coated solids. In Mechanics of Contact Interactions, ed. I.I. Vorovich, and V.M. Alexandrov, 459–475. Moscow: Fizmatlit.Google Scholar
  73. 73.
    Lenci, S., and G. Menditto. 2000. Weak interface in long fibre composites. International Journal of Solids and Structures 37: 4239–4260.CrossRefzbMATHGoogle Scholar
  74. 74.
    Mbanefo, U., and R.A. Westmann. 1990. Axisymmetric stress analysis of a broken, debonded fiber. Journal of Applied Mechanics 57: 654–660.CrossRefzbMATHGoogle Scholar
  75. 75.
    Love, A.E.H. 1944. A treatise on the mathematical theory of elasticity. New York: Dover Publications.zbMATHGoogle Scholar
  76. 76.
    Bateman, H., and A. Erdélyi (eds.). 1954. Tables of integral transformations. New York: McGraw-Hill.Google Scholar
  77. 77.
    Sveshnikov, A.G., and A.N. Tikhonov. 1978. The theory of functions of a complex variable. Moscow: Mir.zbMATHGoogle Scholar
  78. 78.
    Achenbach, J.D., and H. Zhu. 1989. Effect of interfacial zone on mechanical behavior and failure of fibre-reinforced composites. Journal of the Mechanics and Physics of Solids 7: 381–393.CrossRefGoogle Scholar
  79. 79.
    Chen, X., and Y. Liu. 2001. Multiple-cell modelling of fiber-reinforced composites with the presence of interphases using the boundary element method. Computational Materials Science 21: 86–94.CrossRefGoogle Scholar
  80. 80.
    Hashin, Z. 2002. Thin interphase/imperfect interface in elasticity with application to coated fiber composites. Journal of the Mechanics and Physics of Solids 50: 2509–2537.CrossRefzbMATHMathSciNetGoogle Scholar
  81. 81.
    Jasiuk, I., and M.W. Kouider. 1993. The effect of an inhomogeneous interphase on the elastic constants of transversely isotropic comoposites. Mechanics of Materials 15: 53–63.CrossRefGoogle Scholar
  82. 82.
    Lagache, M., A. Agbossou, J. Pastor, and D. Muller. 1994. Role of interphase on the elastic behavior of composite materials: Theoretical and experimental analysis. Journal of Composite Materials 28: 1140–1157.CrossRefGoogle Scholar
  83. 83.
    Lucas da Silva, F.M., J.C. Paulo das Neves, R. D. Adams, A. Wang, and J. K. Spelt. 2009. Analytical models of adhesively bonded joints–Part I: Literature survey. International Journal of Adhesion and Adhesives 29 (3): 319–330.Google Scholar
  84. 84.
    Lucas da Silva, F.M., J.C. Paulo das Neves, R. D. Adams, A. Wang, and J. K. Spelt. 2009. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TW7-4T3M697-1&_user=929460&_coverDate=07%2F302F2008&_alid=787516691&_rdoc=2&_fmt=high&_orig=search&_cdi=5555&_sort=d&_docanchor=&view=c&_ct=18&_acct=C000048339&_version=1&_urlVersion=0&_userid=929460&md5=8ba8ef7504abe7af045efe2c30db50b8. Analytical models of adhesively bonded joints Part II: Comparative study. International Journal of Adhesion and Adhesives 29 (3): 331–341.
  85. 85.
    Milton, G.W. 2002. The theory of composites. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  86. 86.
    Van Fo Fy, G.A. 1971. Theory of reinforced materials with coatings. Kyiv: Naukova Dumka.Google Scholar
  87. 87.
    Benveniste, Y., and T. Miloh. 2001. Imperfect soft and stiff interfaces in two-dimensional elasticity. Mechanics of Materials 33: 309–324.CrossRefGoogle Scholar
  88. 88.
    Mishuris, G., and A. Öchsner. 2005. Edge effects connected with thin interfaces in composite materials. Composite Structures 68: 409–417.CrossRefGoogle Scholar
  89. 89.
    Klarbring, A. 1991. Deviation of a model of adhesively bonded joints by the asymptotic expansion method. International Journal of Engineering Science 29: 493–512.CrossRefzbMATHMathSciNetGoogle Scholar
  90. 90.
    Krasucki, F., and S. Lenci. 2000. Analysis of interfaces of variable stiffness. International Journal of Solids and Structures 37: 3619–3632.Google Scholar
  91. 91.
    Krasucki, F., and S. Lenci. 2000. Yield design of bonded joints. European Journal of Mechanics-A/Solids 19: 649–667.Google Scholar
  92. 92.
    Little, R.W. 1969. Semi-infinite strip problem with built-in edges. Journal of Applied Mechanics 36 (2): 320–323.CrossRefzbMATHGoogle Scholar
  93. 93.
    Sinclair, G.B. 2004. Stress singularities in classical elasticity–I: Removal, interpretation and analysis. Applied Mechanics Reviews 57 (4): 251–297.Google Scholar
  94. 94.
    Sinclair, G.B. 2004. Stress singularities in classical elasticity II: Asymptotic identification. Applied Mechanics Reviews 57 (5): 385–439.Google Scholar
  95. 95.
    Rössle, A. 2000. Corner singularities and regularity of weak solutions for the two-dimensional Lamé equations on domains with angular corners. Journal of Elasticity 60: 57–75.CrossRefzbMATHMathSciNetGoogle Scholar
  96. 96.
    Adams, R.D., and J.A. Harris. 1987. The influence of local geometry on the strength of adhesive joints. International Journal of Adhesion and Adhesives 7: 69–80.CrossRefGoogle Scholar
  97. 97.
    Elliott, H.A. 1948. Three-dimensional stress distributions in hexagonal aelotropic crystals. Proceedings of the Cambridge Philosophical Society. Mathematical and Physical Sciences. 44: 522–533.Google Scholar
  98. 98.
    Lekhnitskii, S.G. 1963. Theory of elasticity of an anisotropic elastic bodies. San Francisco: Golden-Day.zbMATHGoogle Scholar
  99. 99.
    Hashin, Z. 1992. Extremum principles for elastic heterogeneous media with imperfect interface and their application to bounding of effective elastic moduli. Journal of the Mechanics and Physics of Solids 40: 767–781.CrossRefzbMATHMathSciNetGoogle Scholar
  100. 100.
    Greszczuk, L.B. 1975. Microbuckling failure of circular fiber-reinforced composites. AIAA Journal 13 (10): 1311–1318.CrossRefzbMATHGoogle Scholar
  101. 101.
    Guz, A.N. 2009. Setting up a theory of stability of fibrous and laminated composites. International Applied Mechanics 45 (6): 587–612.CrossRefzbMATHMathSciNetGoogle Scholar
  102. 102.
    Johnson, W., and H. Kudo. 1962. The Mechanics of metal extrusion. Manchester: Manchester University Press.Google Scholar
  103. 103.
    Lager, J.R., and R.R. June. 1969. Compressive strength of boron-epoxy composites. Journal of Composite Materials 3 (1): 48–56.CrossRefGoogle Scholar
  104. 104.
    Jones, R.M. 1999. Mechanics of Composite Materials. Philadelphia, PA: Taylor and Francis.Google Scholar
  105. 105.
    Parnes, R., and A. Chiskis. 2002. Buckling of nano-fibre reinforced composites: A reexamination of elastic buckling. Journal of Mechanics and Physics of Solids 50: 855–879.CrossRefzbMATHGoogle Scholar
  106. 106.
    Aboudi, J., and R. Gilat. 2006. Buckling analysis of fibers in composite materials by wave propagation analogy. International Journal of Solids and Structures 43: 5168–5181.CrossRefzbMATHGoogle Scholar
  107. 107.
    Guz, A.N., and Yu.V. Kokhanenko. 1995. Edge effects in composites. International Applied Mechanics 31 (3): 165–181.Google Scholar
  108. 108.
    Harich, J., Yu.N. Lapusta, and W. Wagner. 2009. 3D FE-modeling of surface and anisotropy effects during micro-buckling in fiber composites. Composite Structures 89 (4): 551–555.Google Scholar
  109. 109.
    Lapusta, Yu.N., Harich, J., and W. Wagner. 2007. Micromechanical formulation and 3D finite element modeling of microinstabilities in composites. Computational Materials Science 38 (4): 692–696.Google Scholar
  110. 110.
    Lee, K. 2008. Buckling of fibers under distributed axial load. Fibers and Polymers 9 (2): 200–202.CrossRefMathSciNetGoogle Scholar
  111. 111.
    Lee, V.-G., and T. Mura. 1994. Load transfer from a finite cylindrical fiber into an elastic half-space. Journal of Applied Mechanics 61: 971–975.CrossRefzbMATHGoogle Scholar
  112. 112.
    Zhang, G., and R.A. Latour. 1994. An analytical and numerical study of fiber microbuckling. Composite Science and Technology 51: 95–109.CrossRefGoogle Scholar
  113. 113.
    Tandon, G.P. 1995. Use of composite cylinder model as representative volume element for unidirectional fiber composites. Journal of Composite Materials 29 (3): 388–409.Google Scholar
  114. 114.
    Jochum, Ch., and J.-C. Grandidier. 2004. Microbuckling elastic modeling approach of a single carbon fiber embedded in an epoxy matrix. Composite Science and Technology 64: 2441–2449.CrossRefGoogle Scholar
  115. 115.
    Timoshenko, S.P., and S. Woinowsky-Krieger. 1987. Theory of plates and shells. N.Y.: McGraw-Hill.zbMATHGoogle Scholar
  116. 116.
    Rosen, B.W. (1965). Mechanics of composite strengthening. In: Fibre Composite Materials, Chap. 3. Metals park, OH: American Society for Metals. 37–75.Google Scholar
  117. 117.
    Rzhanitsin, A.R. 1955. Stability of elastic systems equilibrium. Moscow: GITTL.Google Scholar
  118. 118.
    Andrianov, I., and J. Awrejcewicz. 2013. Methods of asymptotic analysis and synthesis in nonlinear dynamics and mechanics of solids. Moscow-Izhevsk (in Russian): Institute of Computer Researches.zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institut für Allgemeine MechanikRWTH Aachen UniversityAachenGermany
  2. 2.Automation, Biomechanics and MechatronicsLodz University of TechnologyŁódźPoland
  3. 3.School of Computing and MathematicsKeele UniversityKeeleUK

Personalised recommendations