Advertisement

Elastic and Viscoelastic Properties of Fibre- and Particle-Reinforced Composites

  • Igor V. AndrianovEmail author
  • Jan AwrejcewiczEmail author
  • Vladyslav V. DanishevskyyEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 77)

Abstract

It is known in industry that in order to increase stiffness and loading ability of materials it is suitable to reinforce the material by fibres.

References

  1. 1.
    Christensen, R.M. 2005. Mechanics of composite materials. Mineola, New York: Dover Publications.Google Scholar
  2. 2.
    Williams, J.L., and J.L. Lewis. 1982. Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis. Transactions of the ASME Journal of Biomechanical Engineering 104 (1): 50–56.CrossRefGoogle Scholar
  3. 3.
    Gibson, L.J., and M.F. Ashby. 1997. Cellular solids: Structures and properties. Oxford: Pergamon Press.CrossRefzbMATHGoogle Scholar
  4. 4.
    Keaveny, T.M. 2001. Strength of trabecular bone. In Bone mechanics handbook, ed. S.C. Cowin, 16–42. Boca Raton: CRC Press.Google Scholar
  5. 5.
    Kopperdahl, D.L., and T.M. Keaveny. 1998. Yield strain behaviour of trabecular bone. Journal of Biomechanics 31: 601–608.CrossRefGoogle Scholar
  6. 6.
    Mullender, M.G., and R. Huiskes. 1995. Proposal for the regulatory mechanism of Wolff’s law. Journal of Orthopaedic Research 13: 503–512.CrossRefGoogle Scholar
  7. 7.
    Mullender, M.G., R. Huiskes, and H. Weinans. 1994. A physiological approach to the simulation of bone remodelling as a self-organizational control process. Journal of Biomechanics 27: 1389–1394.CrossRefGoogle Scholar
  8. 8.
    Smith, T.S., R.B. Martin, M. Hubbard, and B.K. Bay. 1997. Surface remodelling of trabecular bone using a tissue level model. Journal of Orthopaedic Research 15: 593–600.CrossRefGoogle Scholar
  9. 9.
    Vanin, G.A. 1985. Micromechanics of composite materials. Kyiv (in Russian): Naukova Dumka.Google Scholar
  10. 10.
    Hyer, M.W. 1998. Stress analysis of fiber-reinforced composite materials (with contributions on fibers, matrices interfaces and manufacturing by S.R. White). Boston: McGraw-Hill.Google Scholar
  11. 11.
    Hashin, Z. 1983. Analysis of composite materials—A survey. Journal of Applied Mechanics 50: 481–505.CrossRefzbMATHGoogle Scholar
  12. 12.
    Berlin, A.A., S.A. Wolfson, V.G. Oshmyan, and N.S. Enikolopyan. 1990. Principles for polymer composites design. Moscow (in Russian): Chemistry.Google Scholar
  13. 13.
    Bakhvalov, N., and G. Panasenko. 1989. Homogenisation: Averaging processes in periodic media mathematical problems in mechanics of composite materials. Dordrecht: Kluwer.Google Scholar
  14. 14.
    Berlyand, L.V., and V. Mityushev. 2001. Generalized Clausius-Mossotti formula for random composite with circular fibres. Journal of Statistical Physics 102: 115–145.CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Berlyand, L., and V. Mityushev. 2005. Increase and decrease of the effective conductivity of two phase composites due to polydispersity. Journal of Statistical Physics 118: 481–509.CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Craster, R.V. 2000. On effective resistivity and related parameters for periodic checkerboard composites. Proceedings of the Royal Society of London Series A 456: 2741–2754.Google Scholar
  17. 17.
    Dykhne, A.M. 1970. Conductivity of a two-dimensional system. Soviet Physics JETP 32: 63–65.Google Scholar
  18. 18.
    Keller, J.B. 1963. Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders. Journal of Applied Physics 34: 991–993.CrossRefzbMATHGoogle Scholar
  19. 19.
    Obnosov, YuV. 1996. Exact solution of a boundary-value problem for a rectangular checkerboard field. Proceedings of the Royal Society of London Series A 452: 2423–2442.Google Scholar
  20. 20.
    Wojnar, R. 1997. On elastic moduli of a two dimensional two phase system. ZAMM-Journal of Applied Mathematics and Mechanics 77 (2): S469–S472.Google Scholar
  21. 21.
    Abramowitz, M., and I.A. Stegun (eds.). 1965. Handbook of mathematical functions, with formulas, graphs, and mathematical tables. New York: Dover Publications.zbMATHGoogle Scholar
  22. 22.
    Love, A.E.H. 1944. A treatise on the mathematical theory of elasticity. New York: Dover Publications.zbMATHGoogle Scholar
  23. 23.
    Christensen, R.M. 2003. Theory of viscoelasticity. Mineola, New York: Dover Publications.Google Scholar
  24. 24.
    Brüller, S.O., and D. Pütz. 1975. Einfache temperatur- und spannungsabhängige Bestimmungsgleichungen für das Kriechen von Polymeren. Rheologica Acta 15: 143–147.CrossRefGoogle Scholar
  25. 25.
    Milton, G.W. 2002. The theory of composites. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  26. 26.
    Milton, G.W., R.C. McPhedran, and D.R. McKenzie. 1981. Transport properties of arrays of intersecting cylinders. Applied Physics 25: 23–30.CrossRefGoogle Scholar
  27. 27.
    Christensen, R.M., and K.H. Lo. 1979. Solutions for effective shear properties in three phase and cylinder models. Journal of the Mechanics and Physics of Solids 27: 315–330.CrossRefzbMATHGoogle Scholar
  28. 28.
    Hashin, Z. 1962. The elastic moduli of heterogeneous materials. Journal of Applied Mechanics 29: 143–150.CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Richard, T.G. 1975. The mechanical behavior of a solid microsphere filled composite. Journal of Composite Materials 9: 108–113.CrossRefGoogle Scholar
  30. 30.
    Chen, H.-S., and A. Acrivos. 1978. The effective elastic moduli of composite materials containing spherical inclusions at non-dilute concentrations. The International Journal of Solids and Structures 14: 349–364.CrossRefzbMATHGoogle Scholar
  31. 31.
    Krieger, I.M. 1972. Rheology of monodisperse lattices. Advances in Colloid and Interface Science 3: 111–136.CrossRefGoogle Scholar
  32. 32.
    Frankel, N.A., and A. Acrivos. 1967. On the viscosity of a concentrated suspension of solid spheres. Chemical Engineering Science 22: 847–853.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institut für Allgemeine MechanikRWTH Aachen UniversityAachenGermany
  2. 2.Automation, Biomechanics and MechatronicsLodz University of TechnologyŁódźPoland
  3. 3.School of Computing and MathematicsKeele UniversityKeeleUK

Personalised recommendations