Advertisement

Introduction

  • Igor V. AndrianovEmail author
  • Jan AwrejcewiczEmail author
  • Vladyslav V. DanishevskyyEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 77)

Abstract

Contemporary composite materials are widely used in modern engineering.

References

  1. 1.
    Hogg, P.J. 2006. Composites in armor. Science 314: 1100–1101.CrossRefGoogle Scholar
  2. 2.
    Cox, B., and Q. Vang. 2006. In quest of virtual tests for structural composites. Science 314: 1102–1107.CrossRefGoogle Scholar
  3. 3.
    Guz, A.N., and Y.Y. Rushchitskii. 2003. Nanomaterials: On the mechanics of nanomaterials. International Applied Mechanics 39 (11): 1271–1293.Google Scholar
  4. 4.
    Lubin, G. 2014. Handbook of composites. Berlin: Springer.Google Scholar
  5. 5.
    Wilson, M., K. Kannangara, G. Smith, M. Simmons, and B. Raguse. 2002. Nanotechnology: Basic science and emerging technologies. Boca Raton: Chapman and Hall/CRC.CrossRefGoogle Scholar
  6. 6.
    Cowin, S.C. (ed.). 2001. Bone mechanics handbook. Boca Raton: CRC Press.Google Scholar
  7. 7.
    Bogdanovich, A.E., and C.M. Pastore. 1996. Mechanics of textile and laminated composites. London: Chapman and Hall.Google Scholar
  8. 8.
    Starr, T. 1995. Carbon and high performance fibers directory and databook. London: Chapman and Hall.CrossRefGoogle Scholar
  9. 9.
    Vanin, G.A. 1985. Micromechanics of composite materials. Kyiv (in Russian): Naukova Dumka.zbMATHGoogle Scholar
  10. 10.
    Landauer, R. 1952. The electrical resistance of binary metallic mixture. Journal of Applied Physics 23 (7): 779–784.CrossRefGoogle Scholar
  11. 11.
    Mossotti, O.F. 1852. Sobre las fuerzas que rigen la constituciòn de los cuerpos. Memorie di Matematica e di Fisica della Societá Italiana delle Scienze Residente in Modena 24 (2): 49–74.Google Scholar
  12. 12.
    Clausius, R. 1879. Die Mechanische Behandlung der Elektrizität. Braunschweig: F. Vieweg.CrossRefGoogle Scholar
  13. 13.
    Lorenz, L. 1880. Über die Refraktionskonstante. Annalen der Physik und Chemie 247 (9): 70–103.CrossRefGoogle Scholar
  14. 14.
    Lorentz, H.A. 1880. Über die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes der Körperdichte. Annalen der Physik und Chemie 245 (4): 641–665.Google Scholar
  15. 15.
    Lorentz, H.A. 1909. The theory of electrons. Leipzig, B.G. Teubner.Google Scholar
  16. 16.
    Lichtenecker, K. 1926. Die Dielektrizitötskonstante natürlicher und künstlicher Mischkörper, Physikalische Zeitschrift 27(4,5), pp. 115–158.Google Scholar
  17. 17.
    Shvidler, M.I. 1985. Statistical hydrodynamics of porous media. Moscow: Nedra.zbMATHGoogle Scholar
  18. 18.
    Kerner, E.H. 1956. The elastic and thermo-elastic properties of composite media. Proceedings of Physical Society B 69 (8): 808–813.Google Scholar
  19. 19.
    Kerner, E.H. 1956. The electrical conductivity of composite media. Proceedings of Physical Society B 69 (8): 802–807.Google Scholar
  20. 20.
    Van der Poel, C. 1958. On the rheology of concentrated dispersions. Rheologica Acta 1: 198–205.CrossRefGoogle Scholar
  21. 21.
    Bruggeman, D.A.G. 1935. Berechnung verschiedener physikalischer konstanten von heterogenen Substanzen, I. Dielecktrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Annalen der Physik 416 (7): 636–664.Google Scholar
  22. 22.
    Bruggeman, D.A.G. 1936. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. II. Dielecktrizitätskonstanten und Leitfähigkeiten von Vielkristallen der nichtregulären Systeme. Annalen der Physik 417 (7): 645–672.CrossRefGoogle Scholar
  23. 23.
    Bruggeman, D.A.G. 1937. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischörper aus isotropen Substanzen. Annalen der Physik 421 (2): 160–178.CrossRefGoogle Scholar
  24. 24.
    Odelevski, V.I. 1951. Calculation of the generalized conductivity of heterogeneous systems. Zh Tech Physics 21 (6): 667–685.Google Scholar
  25. 25.
    Maxwell, J.C. 1873. Treatise on electricity and magnetism. Oxford: Clarendon Press.zbMATHGoogle Scholar
  26. 26.
    Garnett, J.C.M. 1904. Colours in metal glasses and in metallic films. Philosophical Transactions of the Royal Society of London Series A 203: 385–420.zbMATHCrossRefGoogle Scholar
  27. 27.
    Milton, G.W. 2002. The theory of composites. Cambridge: Cambridge University Press.zbMATHCrossRefGoogle Scholar
  28. 28.
    Torquato, S. 2002. Random heterogeneous materials: microstructure and macroscopic properties. New York: SpringerGoogle Scholar
  29. 29.
    Voigt, W. 1889. Über die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen der Physik und Chemie 38: 573–587.zbMATHCrossRefGoogle Scholar
  30. 30.
    Reuss, A. 1929. Berechnung der Flie\(\beta \)grenze on Mischkristallen auf Grund der Plastizitätsbedingungen für Einkristall. ZAMM 9: 49–58.Google Scholar
  31. 31.
    Wiener, O. 1889. Die Theorie des Mischkörpers für das Feld der stationären Strömung. Erste Abhandlung die Mittelwertsätze für Kraft, Polarisation und Energie. Abhandlungen der Mathematisch-Physischen Klasse der Königlich Sächsischen Gesellschaft der Wissenschaften 32 (6): 507–604.Google Scholar
  32. 32.
    Hill, R. 1952. The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society Section A 65: 349–354.CrossRefGoogle Scholar
  33. 33.
    Hashin, Z., and S. Shtrikman. 1962. A variational approach to the theory of the effective magnetic permeability of multiphase materials. Journal of Applied Physics 33: 1514–1517.zbMATHCrossRefGoogle Scholar
  34. 34.
    Hashin, Z., and S. Shtrikman. 1963. A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids 11: 127–140.zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    Milton, G.W. 1982. Bounds on the elastic and transport properties of two-component composites. Journal of the Mechanics and Physics of Solids 30: 177–191.zbMATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Milton, G.W., and N. Phan-Thien. 1982. New bounds on the effective moduli of two-component materials. Proceedings of the Royal Society of London Series A 380: 305–331.zbMATHCrossRefGoogle Scholar
  37. 37.
    Ponte Castaneda, P., and P. Suquet. 1998. Nonlinear composites. Advances in Applied Mechanics 34: 171–302.zbMATHCrossRefGoogle Scholar
  38. 38.
    Talbot, D.R.S. 2001. Improved bounds for the overall properties of a nonlinear composite dielectric. Proceedings of the Royal Society of London Series A 457: 587–597.zbMATHCrossRefGoogle Scholar
  39. 39.
    Torquato, S. 1991. Random heterogeneous media: Microstructure and improved bounds on the effective properties. Applied Mechanics Reviews 44: 37–76.MathSciNetCrossRefGoogle Scholar
  40. 40.
    Willis, J.R. 1991. On methods to bound the overall properties of nonlinear composites. Journal of the Mechanics and Physics of Solids 39: 73–86.zbMATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Beran, M.J. 1968. Statistical continuum theories. New York: Wiley.zbMATHGoogle Scholar
  42. 42.
    Bergman, D.J. 1978. The dielectric constant of a composite material: A problem in classical physics. Physics Reports 34: 377–407.Google Scholar
  43. 43.
    Bergman, D.J. 1993. Hierarchies of Stieltjes functions and their application to the calculation of bounds for the dielectric constant of a two-components composite medium. SIAM Journal of Applied Mathematics 53: 915–930.Google Scholar
  44. 44.
    Telega, J.J., S. Tokarzewski, and A. Galka. 2000. Effective conductivity of nonlinear two-phase media: homogenization and two-point Padé approximants. Acta Applicandae Mathematics 61: 295–315.Google Scholar
  45. 45.
    Tokarzewski, S. 1996. Two-point Padé approximants for the expansion of Stieltjes functions in real domain. Journal of Computational and Applied Mathematics 67: 59–72.zbMATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    Tokarzewski, S., and I. Andrianov. 2001. Effective coefficients for real non-linear and fictitious linear temperature-dependent periodic composites. International Journal of Non-Linear Mechanics 36: 187–195.zbMATHMathSciNetCrossRefGoogle Scholar
  47. 47.
    Tokarzewski, S., and J.J. Telega. 1996. S-continued fraction to complex transport coefficients of two-phase composites. Computer Assisted Methods in Engineering and Science 3: 109–119.Google Scholar
  48. 48.
    Tokarzewski, S., and J.J. Telega. 1996. Two-point Padé approximants to Stieltjes series representations of bulk moduli of regular composites. Computer Assisted Methods in Engineering and Science 3: 121–132.Google Scholar
  49. 49.
    Tokarzewski, S., and J.J. Telega. 1997. S-continued fraction method for the investigation of a complex dielectric constant of two-phase composite. Acta Applicandae Mathematics 49: 55–83.Google Scholar
  50. 50.
    Tokarzewski, S., I.V. Andrianov, and V. Danishevs’kyy. 1997. The investigation of a complex conductivity of regular arrays of spheres. Theoretical Foundations of Civil Engineering 5: 414–425.Google Scholar
  51. 51.
    Tokarzewski, S., I.V. Andrianov, and V. Danishevs’kyy. 1998. Dynamiczne moduly skretne pretow sprezystych porami wypelnionymi ciecza lepka. Theoretical Foundations of Civil Engineering 6: 393–398.Google Scholar
  52. 52.
    Tokarzewski, S., I.V. Andrianov, and V. Danishevs’kyy. 2001. Parametric complex bounds on effective transport coefficients of two-phase media. Theoretical Foundations of Civil Engineering 9: 433–440.Google Scholar
  53. 53.
    Tokarzewski, S., I.V. Andrianov, V. Danishevs’kyy, and Starushenko, G. 2001. Analytical continuation of asymptotic expansions of effective transport coefficients by Padé approximants. Nonlinear Analysis 47: 2283–2292.Google Scholar
  54. 54.
    Tokarzewski, S., J. Blawzdziewicz, and I. Andrianov. 1994. Effective conductivity for densely packed highly conducting cylinders. Applied Physics A 59: 601–604.Google Scholar
  55. 55.
    Tokarzewski, S., J. Blawzdziewicz, and I. Andrianov. 1994. Two-point Padé approximants for effective conductivity of a periodic array of cylinders. Advances in Structured and Heterogeneous Continua, 263–267. New York: Allerton Press.Google Scholar
  56. 56.
    Tokarzewski, S., A. Galka, I.V. Andrianov, and V. Danishevs’kyy. 1999. Padé bounds on temperature-dependent conductivities of heterogeneous materials. Theoretical Foundations of Civil Engineering 7: 412–427.Google Scholar
  57. 57.
    Tokarzewski, S., A. Galka, I.V. Andrianov, and V. Danishevs’kyy. 2002. Parametric inclusion regions for transport coefficients of two-phase media. Theoretical Foundations of Civil Engineering 10: 465–470.Google Scholar
  58. 58.
    Berryman, J.G., and G.W. Milton. 1988. Microgeometry of random composites and porous media. Journal of Physics D: Applied Physics 21: 87–94.CrossRefGoogle Scholar
  59. 59.
    Gibiansky, L.V., and S. Torquato. 1995. Rigorous links between the effective conductivity and elastic moduli of fibre-reinforced composite materials. Philosophical Transactions of the Royal Society of London 343: 243–278.zbMATHCrossRefGoogle Scholar
  60. 60.
    Gibiansky, L., and S. Torquato. 1996. Connection between the conductivity and elastic moduli of isotropic composite materials. Proceedings of the Royal Society of London Series A 452: 253–283.zbMATHMathSciNetCrossRefGoogle Scholar
  61. 61.
    Shermergor, T.D. 1977. The theory of microinhomogeneous media. Moscow: Nauka.Google Scholar
  62. 62.
    Einstein, A. 1906. Eine Neue Bestimmung der Moleküldimensionen. Annalen der Physik 324: 289–306.zbMATHCrossRefGoogle Scholar
  63. 63.
    Einstein, A. 1911. Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Moleküldimensionen. Annalen der Physik 339: 591–592.zbMATHCrossRefGoogle Scholar
  64. 64.
    Eshelby, J.D. 1957. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society of London Series A 241: 376–396.zbMATHMathSciNetCrossRefGoogle Scholar
  65. 65.
    Eshelby, J.D. 1982. The stresses on and in a thin inextensible fibre in a stretched elastic medium. Engineering Fracture Mechanics 16 (3): 453–455.CrossRefGoogle Scholar
  66. 66.
    Buryachenko, V.A. 2001. Multiparticle effective field and related methods in micromechanics of composite materials. Applied Mechanics Reviews 54: 1–47.CrossRefGoogle Scholar
  67. 67.
    Buryachenko, V.A. 2007. Micromechanics of heterogeneous materials. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  68. 68.
    Christensen, R.M. 2005. Mechanics of composite materials. Mineola, NY: Dover Publications.Google Scholar
  69. 69.
    Christensen, R.M., and K.H. Lo. 1979. Solutions for effective shear properties in three phase and cylinder models. Journal of the Mechanics and Physics of Solids 27: 315–330.zbMATHCrossRefGoogle Scholar
  70. 70.
    Hashin, Z. 1983. Analysis of composite materials—A survey. Journal of Applied Mechanics 50: 481–505.Google Scholar
  71. 71.
    Keller, J.B. 1963. Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders or nonconducting cylinders. Journal of Applied Physics 34: 991–993.zbMATHCrossRefGoogle Scholar
  72. 72.
    Batchelor, G.K., and R.W. O’Brien. 1977. Thermal or electrical conduction through a granular material. Proceedings of the Royal Society of London Series A 355: 313–333.CrossRefGoogle Scholar
  73. 73.
    Van Tuyl, A.H. 1996. Asymptotic expansions with error bounds for the coefficients of capacity and induction of two spheres. SIAM Journal of Mathematical Analysis 27: 782–804.Google Scholar
  74. 74.
    Lagzdins, A.Zh., V.P. Tamuzh, G.A. Teters, and A.F. Kregers. 1992. Orientational Averaging in Mechanics of Solids. Harlow, Essex: Longman Scientific and Technical.Google Scholar
  75. 75.
    Andrianov, I.V., V.V. Danishevs’kyy, and S. Tokarzewski. 1996. Two-point quasifractional approximants for effective conductivity of a simple cubic lattice of spheres. International Journal of Heat and Mass Transfer 39: 2349–2352.zbMATHCrossRefGoogle Scholar
  76. 76.
    Andrianov, I.V., V.V. Danishevs’kyy, and S. Tokarzewski. 2000. Quasifractional approximants in the theory of composite materials. Acta Applicandae Mathematics 61: 29–35.Google Scholar
  77. 77.
    Grigolyuk, E.I., and L.A. Fil’shtinsky. 1970. Perforated Plates and Shells. Moscow (in Russian): Nauka.Google Scholar
  78. 78.
    Gluzman, S., V. Mityushev, and W. Nawalaniec. 2017. Computational Analysis of structured Media. Academic Press.Google Scholar
  79. 79.
    Pobedrya, B.Ye. 1983. On the theory of viscoelasticity of structurally inhomogeneous media. Journal of Applied Mathematics and Mechanics 47: 103–109.zbMATHGoogle Scholar
  80. 80.
    Pobedrya, B.Ye. 1984. Mechanics of Composite Materials. Moscow: MGU.zbMATHGoogle Scholar
  81. 81.
    Fil’shtinskii, L.A., and D. Bardzokas. 1995. Averaging the electrical properties of fiber-reinforced metal composites. Mechanics of Composite Materials 31 (4): 390–396.CrossRefGoogle Scholar
  82. 82.
    Fil’shtinskii, L.A., and D. Bardzokas. 1997. Averaging the electrical properties of fiber-reinforced metal composites with hollow fibers. Mechanics of Composite Materials 33 (3): 269–274.CrossRefGoogle Scholar
  83. 83.
    Fil’shtinskii, L.A., and Yu.V. Shramko. 1998. Averaging the physical properties of fibrous piezocomposites. Mechanics of Composite Materials 34 (1): 87–93.Google Scholar
  84. 84.
    Rayleigh, R.S. 1892. On the influence of obstacles arranged in rectangular order upon the properties of medium. Philosophical Magazine 34: 481–502.zbMATHCrossRefGoogle Scholar
  85. 85.
    McKenzie, D.R., R.C. McPhedran, and G.H. Derrick. 1978. The conductivity of lattices of spheres. II. The body-centred and face-centred lattices. Proceedings of the Royal Society of London Series A 362: 211–232.CrossRefGoogle Scholar
  86. 86.
    McPhedran, R.C. 1986. Transport properties of cylinder pairs and of the square array of cylinders. Proceedings of the Royal Society of London Series A 408: 31–43.CrossRefGoogle Scholar
  87. 87.
    McPhedran, R.C., and D.R. McKenzie. 1978. The conductivity of lattices of spheres. 1. The simple cubic lattice. Proceedings of the Royal Society of London Series A 359: 45–63.CrossRefGoogle Scholar
  88. 88.
    McPhedran, R.C., and G.W. Milton. 1987. Transport properties of touching cylinder pairs and of the square array of touching cylinders. Proceedings of the Royal Society of London Series A 411: 313–326.CrossRefGoogle Scholar
  89. 89.
    McPhedran, R.C., L. Poladian, and G.W. Milton. 1988. Asymptotic studies of closely spaced highly conducting cylinders. Proceedings of the Royal Society of London Series A 415: 185–196.CrossRefGoogle Scholar
  90. 90.
    Willis, J.R. 1983. The overall elastic response of composite materials. Transactions ASME Journal of Applied Mechanics 50: 1202–1209.Google Scholar
  91. 91.
    Bakhvalov, N., and G. Panasenko. 1989. Averaging processes in periodic media. Mathematical problems in mechanics of composite materials. Kluwer, Dordrecht.Google Scholar
  92. 92.
    Oleynik, O.A., A.S. Shamaev, and G.A. Yosif’yan. 1992. Mathematical problems in elasticity and homogenization. Amsterdam: North-Holland.Google Scholar
  93. 93.
    Berdichevsky, V.L. 1983. Variational principles of the continuum mechanics. Moscow (in Russian): Nauka.zbMATHGoogle Scholar
  94. 94.
    Sanchez-Palencia, E. 1980. Non-homogeneous media and vibrations theory. Berlin: Springer.zbMATHGoogle Scholar
  95. 95.
    Sanchez-Palencia, E. 1987. Boundary layers and edge effects in composites. In Homogenization techniques for composite materials, ed. E. Sanchez-Palencia, and A. Zaoui, 122–193. Berlin, NY: SpringerGoogle Scholar
  96. 96.
    Babushka, I. 1979. The computational aspects of the homogenization problem. Lecture Notes in Mathematics 704: 309–316.MathSciNetCrossRefGoogle Scholar
  97. 97.
    Bensoussan, A., J.-L. Lions, and G. Papanicolaou. 1978. Asymptotic analysis for periodic structures. Amsterdam: North-Holland.zbMATHGoogle Scholar
  98. 98.
    Tartar, L. 1990. H-measure, a new approach for studying homogenization, oscillation and concentration effects in partial differential equations. Proceedings of the Royal Society of Edinburgh Section A 115: 193–230.zbMATHMathSciNetCrossRefGoogle Scholar
  99. 99.
    Duvaut, G. 1976. Analyse fonctionelle et mecanique des milieux continue. Application á l’étude des matériaux composites élastiques a structure périodique-homogénéisation. Theoretical and Applied Mechanics, Koiter, W.T. (ed.), North-Holland, Amsterdam, 1976, 119–132.Google Scholar
  100. 100.
    Duvaut, G. 1977. Comportement macroscopique d’une plaque perforée périodiquement. Lecture Notes in Mathematics 594: 131–145.zbMATHCrossRefGoogle Scholar
  101. 101.
    Manevitch, L.I., I.V. Andrianov, and V.O. Oshmyan. 2002. Mechanics of periodically heterogeneous structures. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  102. 102.
    Boutin, C. 1995. Microstructural influence on heat conduction. International Journal of Heat and Mass Transfer 38: 3181–3195.zbMATHCrossRefGoogle Scholar
  103. 103.
    Boutin, C. 1996. Microstructural effects in elastic composites. International Journal of Solids and Structures 33: 1023–1051.zbMATHCrossRefGoogle Scholar
  104. 104.
    Boutin, C. 2000. Study of permeability by periodic and self-consistent homogenization. European Journal of Mechanics—A/Solids 19: 603–632.zbMATHMathSciNetCrossRefGoogle Scholar
  105. 105.
    Cherednichenko, K.D., and V.P. Smyshlyaev. 2004. On full two-scale expansion of the solutions of nonlinear periodic rapidly oscillating problems and higher-order homogenised variational problems. Archive for Rational Mechanics and Analysis 174: 385–442.zbMATHMathSciNetCrossRefGoogle Scholar
  106. 106.
    Gambin, B., and E. Kröner. 1989. High order terms in the homogenized stress-strain relation of periodic elastic media. Physica Status Solidi B 151: 513–519.CrossRefGoogle Scholar
  107. 107.
    Smyshlyaev, V.P., and K.D. Cherednichenko. 2000. On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media. Journal of the Mechanics and Physics of Solids 48: 1325–1357.zbMATHMathSciNetCrossRefGoogle Scholar
  108. 108.
    Allaire, G. 1992. Homogenization and two-scale convergence. SIAM Journal on Mathematical Analysis 23: 1482–1518.zbMATHMathSciNetCrossRefGoogle Scholar
  109. 109.
    Cherednichenko, K.D., V.P. Smyshlyaev, and V.V. Zhikov. 2006. Non-local homogenized limits for composite media with highly anisotropic periodic fibres. Proceedings of the Royal Society of Edinburgh 136A: 87–114.zbMATHMathSciNetCrossRefGoogle Scholar
  110. 110.
    Zhikov, V.V. 2000. On an extension of the method of two-scale convergence and its applications. Sbornik: Mathematics 191: 973–1014.Google Scholar
  111. 111.
    Pernin, J.N., and E. Jacquet. 2001. Elasticity in highly heterogeneous composite medium: Threshold phenomenon and homogenization. International Journal of Engineering Sciences 39: 755–798.Google Scholar
  112. 112.
    Mityushev, V.V., E.V. Pesetskaya, and S.V. Rogosin. 2007. Analytical methods for heat conduction in composites and porous media. In: G. Murch, A. Öchsner and M. de Lemos (Eds.). Cellular and Porous Materials. Thermal Properties Simulation and Prediction. Amsterdam: Wiley-VCH: 124–167.Google Scholar
  113. 113.
    Kolpakov, A.A., and A.G. Kolpakov. 2010. Capacity and Transport in Contrast Composite Structures: Asymptotic Analysis and Applications. CRC Press, Boca Raton: Taylor and Francis.zbMATHGoogle Scholar
  114. 114.
    Ponte Castaneda, P. J.J. Telega, and B. Gambin. (eds.). 2004. Linear comparison methods for nonlinear composites. Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials, Dordrecht: Kluwer.Google Scholar
  115. 115.
    Needleman, A. 1987. A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics 54: 525–531.zbMATHCrossRefGoogle Scholar
  116. 116.
    Needleman, A. 1990. An analysis of tensile decohesion along an interface. Journal of the Mechanics and Physics of Solids 38: 289–324.CrossRefGoogle Scholar
  117. 117.
    Needleman, A. 1992. Micromechanical modelling of interfacial decohesion. Ultramicroscopy 40: 203–214.MathSciNetCrossRefGoogle Scholar
  118. 118.
    Espinosa, H.D., S.K. Dwivedi, and H.-C. Lu. 2000. Modelling impact induced delamination of woven fibre reinforced composites with contact/cohesive laws. Computer Methods in Applied Mechanics and Engineering 183: 259–290.zbMATHCrossRefGoogle Scholar
  119. 119.
    Espinosa, H.D., P.D. Zavattieri, and S.K. Dwivedi. 1998. A finite deformation continuum/discrete model for the description of fragmentation and damage in brittle materials. Journal of the Mechanics and Physics of Solids 46: 1909–1942.zbMATHMathSciNetCrossRefGoogle Scholar
  120. 120.
    Espinosa, H.D., P.D. Zavattieri, and G.L. Emore. 1998. Adaptive FEM computation of geometric and material nonlinearities with application to brittle failure. Mechanics of Materials 29: 275–305.CrossRefGoogle Scholar
  121. 121.
    Tvergaard, V. 1990. Effect of fibre debonding in a whisker-reinforced metal. Materials Science and Engineering A 125: 203–213.CrossRefGoogle Scholar
  122. 122.
    Tvergaard, V. 1995. Fiber debonding and breakage in a whisker reinforced metal. Materials Science and Engineering A 90: 215–222.CrossRefGoogle Scholar
  123. 123.
    Tvergaard, V., and J.W. Hutchinson. 1992. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. Journal of the Mechanics and Physics of Solids 40: 1377–1397.zbMATHCrossRefGoogle Scholar
  124. 124.
    Tvergaard, V., and J.W. Hutchinson. 1993. The influence of plasticity on mixed-mode interface toughness. Journal of the Mechanics and Physics of Solids 41: 1119–1135.zbMATHCrossRefGoogle Scholar
  125. 125.
    Camacho, G.T., and M. Ortiz. 1996. Computational modelling of impact damage in brittle materials. International Journal of Solids and Structures 33: 2899–2938.zbMATHCrossRefGoogle Scholar
  126. 126.
    Chandra, N., H. Li, C. Shet, and H. Ghonem. 2002. Some issues in the application of cohesive zone models for metal-ceramic interfaces. International Journal of Solids and Structures 39: 2827–2855.zbMATHCrossRefGoogle Scholar
  127. 127.
    Geubelle, P.H., and J.S. Baylor. 1998. Impact-induced delamination of composites: A 2D simulation. Composites B 29: 589–602.CrossRefGoogle Scholar
  128. 128.
    Huang, Y., and H. Gao. 2001. Intersonic crack propagation. Part I: The fundamental solution. Journal of Applied Mechanics 68: 169–175.zbMATHCrossRefGoogle Scholar
  129. 129.
    Kubair, D.V., P.H. Geubelle, and Y. Huang. 2003. Analysis of a rate-dependent cohesive model for dynamic crack propagation. Engineering Fracture Mechanics 70: 685–704.CrossRefGoogle Scholar
  130. 130.
    Ortiz, M., and A. Pandolfi. 1999. Finite-deformation irreversible cohesive element for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering 44: 1267–1282.Google Scholar
  131. 131.
    Raghavan, P., and S. Ghosh. 2005. A continuum damage mechanics model for unidirectional composites undergoing interfacial debonding. Mechanics of Materials 37: 955–979.Google Scholar
  132. 132.
    Samudrala, O., and A.J. Rosakis. 2003. Effect of loading and geometry on the subsonic/intersonic transition of a bimetallic interface crack. Engineering Fracture Mechanics 70: 309–337.CrossRefGoogle Scholar
  133. 133.
    Samudrala, O., Y. Huang, and A.J. Rosakis. 2002. Subsonic and intersonic mode. Part II: Crack propagation with a rate-dependent cohesive zone. Journal of the Mechanics and Physics of Solids 50: 1231–1268.Google Scholar
  134. 134.
    Xu, X.-P., and A. Needleman. 1994. Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids 42: 1397–1434.zbMATHCrossRefGoogle Scholar
  135. 135.
    Zhong, X.A., and W.G. Knauss. 1997. Analysis of interfacial failure in particle-filled elastomers. Journal of Engineering Materials and Technology 119: 198–204.CrossRefGoogle Scholar
  136. 136.
    Zhong, X.A., and W.G. Knauss. 2000. Effects of particle interaction and size variation on damage evolution in filled elastomers. Mechanics of Composite Materials and Structures 7: 35–53.CrossRefGoogle Scholar
  137. 137.
    Levy, A.J. 1996. The effective dilatational response of fiber reinforced composites with nonlinear interface. Journal of Applied Mechanics 63: 357–364.zbMATHCrossRefGoogle Scholar
  138. 138.
    Levy, A.J. 2000. The fiber composite with nonlinear interface. Part I: Axial tension. Journal of Applied Mechanics 67: 727–732.zbMATHCrossRefGoogle Scholar
  139. 139.
    Levy, A.J., and Z. Dong. 1998. Effective transverse response of fiber composites with nonlinear interface. Journal of the Mechanics and Physics of Solids 46: 1279–1300.Google Scholar
  140. 140.
    Tan, H., C. Liu, Y. Huang, and P.H. Geubelle. 2005. The cohesive law for the particle/matrix interfaces in high explosives. Journal of the Mechanics and Physics of Solids 53: 1892–1917.CrossRefGoogle Scholar
  141. 141.
    Aboudi, J. 1987. Damage in composites—modelling of imperfect bonding. Composites Science and Technology 28: 103–128.CrossRefGoogle Scholar
  142. 142.
    Achenbach, J.D., and H. Zhu. 1989. Effect of interfacial zone on mechanical behavior and failure of fibre-reinforced composites. Journal of the Mechanics and Physics of Solids 7: 381–393.CrossRefGoogle Scholar
  143. 143.
    Achenbach, J.D., and H. Zhu. 1990. Effect of interphases on micro and macromechanical behavior of hexagonal-array fiber composites. Journal of Applied Mechanics 57: 956–963.CrossRefGoogle Scholar
  144. 144.
    Benabou, L., M. Naït-Abdelaziz, and N. Benseddiq. 2004. Effective properties of a composite with imperfectly bonded interface. Theoretical and Applied Fracture Mechanics 41: 15–20.CrossRefGoogle Scholar
  145. 145.
    Benveniste, Y. 1985. The effective mechanical behavior of composite materials with imperfect contact between constituents. Mechanics of Materials 4: 197–208.CrossRefGoogle Scholar
  146. 146.
    Benveniste, Y., and T. Chen. 2001. On the Saint-Venant torsion of composite bars with imperfect interfaces. Proceedings of the Royal Society of London A 457: 231–255.zbMATHMathSciNetCrossRefGoogle Scholar
  147. 147.
    Benveniste, Y., and T. Miloh. 2001. Imperfect soft and stiff interfaces in two-dimensional elasticity. Mechanics of Materials 33: 309–324.CrossRefGoogle Scholar
  148. 148.
    Chen, X., and Y. Liu. 2001. Multiple-cell modelling of fiber-reinforced composites with the presence of interphases using the boundary element method. Computational Materials Science 21: 86–94.CrossRefGoogle Scholar
  149. 149.
    Hashin, Z. 1990. Thermoelastic properties of fiber composites with imperfect interface. Mechanics of Materials 8: 333–348.CrossRefGoogle Scholar
  150. 150.
    Hashin, Z. 1991. Thermoelastic properties of particulate composites with imperfect interface. Journal of the Mechanics and Physics of Solids 39: 745–762.Google Scholar
  151. 151.
    Jasiuk, I., and M.W. Kouider. 1993. The effect of an inhomogeneous interphase on the elastic constants of transversely isotropic comoposites. Mechanics of Materials 15: 53–63.CrossRefGoogle Scholar
  152. 152.
    Lagache, M., A. Agbossou, J. Pastor, and D. Muller. 1994. Role of interphase on the elastic behavior of composite materials: theoretical and experimental analysis. Journal of Composite Materials 28: 1140–1157.CrossRefGoogle Scholar
  153. 153.
    Lenci, S. 2000. Melan’s problems with weak interface. Journal of Applied Mechanics 67: 22–28.zbMATHCrossRefGoogle Scholar
  154. 154.
    Lenci, S., and G. Menditto. 2000. Weak interface in long fibre composites. International Journal of Solids and Structures 37: 4239–4260.zbMATHCrossRefGoogle Scholar
  155. 155.
    Lipton, R., and B. Vernescu. 1995. Variational methods, size effects and extremal microgeometries for elastic composites with imperfect interface. Mathematical Models and Methods in Applied Sciences 5: 1139–1173.zbMATHMathSciNetCrossRefGoogle Scholar
  156. 156.
    Nie, S., and C. Basaran. 2005. A micromechanical model for effective elastic properties of particulate composites with imperfect interfacial bonds. International Journal of Solids and Structures 42: 4179–4191.zbMATHCrossRefGoogle Scholar
  157. 157.
    Pagano, N.J., and G.P. Tandon. 1990. Modelling of imperfect bonding in fiber reinforced brittle matrix composites. Mechanics of Materials 9: 49–64.CrossRefGoogle Scholar
  158. 158.
    Qu, J. 1993. The effect of slightly weakened interfaces on the overall elastic properties of composite materials. Mechanics of Materials 14: 269–281.CrossRefGoogle Scholar
  159. 159.
    Van Fo Fy, G.A. 1971. Theory of Reinforced Materials with Coatings. Kyiv: Naukova Dumka.Google Scholar
  160. 160.
    Wu, Y., Z. Ling, and Z. Dong. 1999. Stress-strain fields and the effectiveness shear properties for three-phase composites with imperfect interface. International Journal of Solids and Structures 37: 1275–1292.zbMATHCrossRefGoogle Scholar
  161. 161.
    Zhu, H., and J.D. Achenbach. 1991. Effect of fiber-matrix interphase defects on microlevel stress states at neighboring fibers. Journal of Composite Materials 25: 224–238.CrossRefGoogle Scholar
  162. 162.
    Hashin, Z. 2001. Thin interphase/imperfect interface in conduction. Journal of Applied Physics 89: 2261–2267.CrossRefGoogle Scholar
  163. 163.
    Hashin, Z. 2002. Thin interphase/imperfect interface in elasticity with application to coated fiber composites. Journal of the Mechanics and Physics of Solids 50: 2509–2537.zbMATHMathSciNetCrossRefGoogle Scholar
  164. 164.
    Miloh, T., and Y. Benveniste. 1999. On the effective conductivity of composites with ellipsoidal inhomogeneities and highly conducting interfaces. Proceedings of the Royal Society of London Series A 455: 2687–2706.zbMATHMathSciNetCrossRefGoogle Scholar
  165. 165.
    Dumontet, H. 1986. Study of a boundary layer problem in elastic composite materials. Mathematical Modelling and Numerical Analysis 20: 265–286.zbMATHMathSciNetCrossRefGoogle Scholar
  166. 166.
    Neuss-Radu, M. 2000. A result on the decay of the boundary layers in the homogenization theory. Asymptotic Analysis 23: 313–328.zbMATHMathSciNetGoogle Scholar
  167. 167.
    Neuss-Radu, M. 2001. The boundary behavior of a composite material. Mathematical Modelling and Numerical Analysis 35 (3): 407–435.zbMATHMathSciNetCrossRefGoogle Scholar
  168. 168.
    Allaire, G., and M. Amar. 1999. Boundary layer tails in periodic homogenization. ESAIM: Control, Optimisation Calculus of Variations 4: 209–243.zbMATHMathSciNetCrossRefGoogle Scholar
  169. 169.
    Bystrov, V.M., A.N. Guz’, and Yu.V. Kokhanenko. 1987. Numerical study of the edge effect in composites. International Applied Mechanics 23 (8): 707–711.Google Scholar
  170. 170.
    Mishuris, G., and A. Öchsner. 2005. Edge effects connected with thin interfaces in composite materials. Composite Structures 68: 409–417.CrossRefGoogle Scholar
  171. 171.
    Kalamkarov, A.L. 1992. Composite and Reinforced Elements of Construction. Chichester, NY: Wiley.Google Scholar
  172. 172.
    Kalamkarov, A.L., and A.V. Georgiades. 2002. Modeling of smart composites on account of actuation. Thermal Con-ductivity and Hygroscopic Absorption, Composites, Part B 33 (2): 141–152.Google Scholar
  173. 173.
    Kalamkarov, A.L., and A.G. Kolpakov. 1997. Analysis, design and optimization of composite Structures. Chichester, NY: Wiley.Google Scholar
  174. 174.
    Argatov, I.I., and S.A. Nazarov. 1993. Junction problem of shashlik (skewer) type. Comptes Rendus de l’Académie des Sciences 1316: 1329–1334.zbMATHMathSciNetGoogle Scholar
  175. 175.
    Argatov, I.I., and S.A. Nazarov. 1996. Asymptotic analysis of problems on junctions of domains of different limit dimensions. A body pierced by a thin rod. Izvestiya Mathematics 60 (1): 1–37.Google Scholar
  176. 176.
    Hashin, Z. 1965. Viscoelastic behavior of heterogeneous media. Journal of Applied Mechanics 8: 630–636.Google Scholar
  177. 177.
    Hashin, Z. 1966. Viscoelastic fiber reinforced materials. AIAA Journal 8: 1411–1417.zbMATHCrossRefGoogle Scholar
  178. 178.
    Brinson, L.C., and W.S. Lin. 1998. Comparison methods for effective properties of multiphase viscoelastic composites. Composite Structures 41: 353–367.CrossRefGoogle Scholar
  179. 179.
    Mori, T., and K. Tanaka. 1973. Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica 21: 571–574.CrossRefGoogle Scholar
  180. 180.
    Gibiansky, L.V., G.W. Milton, and J.G. Berryman. 1999. On the effective viscoelastic moduli of two-phase media. III. Rigorous bounds on the complex shear modulus in two dimensions. Proceedings of the Royal Society A 455: 2117–2149.Google Scholar
  181. 181.
    Beurthey, S., and A. Zaoui. 2000. Structural morphology and relaxation spectra of viscoelastic heterogeneous materials. European Journal of Mechanics—A/Solids 19: 1–16.zbMATHCrossRefGoogle Scholar
  182. 182.
    Scheiner, S., and C. Hellmich. 2009. Continuum microviscoelasticity model for aging basic creep of early-age concrete. Journal of Engineering Mechanics 135: 307–323.CrossRefGoogle Scholar
  183. 183.
    Berlin, A.A., S.A. Wolfson, V.G. Oshmyan, and N.S. Enikolopyan. 1990. Principles for polymer composites design. Moscow (in Russian): Chemistry.Google Scholar
  184. 184.
    Snarskii, A.A., I.V. Bezsudnov, V.A. Sevryukov, A. Morozovskiy, and J. Malinsky. 2016. Transport processes in macroscopically disordered media (from medium field theory to percolation). Berlin: Springer.zbMATHCrossRefGoogle Scholar
  185. 185.
    Vinogradov, A.P. 2001. Elecrodynamics of composites. Moscow: URSS.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institut für Allgemeine MechanikRWTH Aachen UniversityAachenGermany
  2. 2.Automation, Biomechanics and MechatronicsLodz University of TechnologyŁódźPoland
  3. 3.School of Computing and MathematicsKeele UniversityKeeleUK

Personalised recommendations