Skip to main content

Semi-formal Cycle-Accurate Temporal Execution Traces Reconstruction

  • Conference paper
  • First Online:
Formal Modeling and Analysis of Timed Systems (FORMATS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10419))

Abstract

Today’s Real-Time Systems’ (RTSs) increasing speed and complexity make debugging of timing related faults one of the most challenging engineering tasks. Debugging starts with capturing the fault symptoms, which requires continuous cycle-accurate execution traces. However, due to limitations of on-chip buffers’ area and output ports’ throughput, these cannot be obtained easily.

This paper introduces an approach that divides the tracing into two tasks, monitoring on-chip execution to retrieve accurate timing information and high level functional simulation to retrieve signal contents. A semi-formal cycle-accurate reconstruction method uses these two sources to retrieve a complete, cycle-accurate trace of a given signal. An experiment illustrates how this method allows the cycle-accurate reconstruction of on-chip traces of a Real-Time Autonomous-Guided-Vehicle software.

This work was supported by the University of Bremen’s graduate school SyDe funded by the German Excellence Initiative, the German Federal Ministry of Education and Research (BMBF) within the project 01IW16001 (SELFIE), the German Research Foundation (DFG) within the Reinhart Koselleck project DR 287/23-1 and the German Academic Exchange Service (DAAD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.sams-project.org, the module is certified for use in safety systems up to SIL-3 according to IEC EN 61508.

  2. 2.

    Note that using interrupts to alter the execution is not recommended for safety critical software in general. However, it could be unavoidable to fulfill a hard requirement of responding to external changes instantaneously not via pulling.

References

  1. ChipScopePro (2017). www.xilinx.com/products/design-tools/chipscopepro.html

  2. Embedded Trace Macrocell block specification (2017). http://www.arm.com

  3. Gaisler Research (2017). http://www.gaisler.com

  4. System Navigator Probe (2017). http://www.mips.com

  5. Abramovici, M., Bradley, P., Dwarakanath, K., Levin, P., Memmi, G., Miller, D.: A reconfigurable design-for-debug infrastructure for SoCs. In: DAC (2006)

    Google Scholar 

  6. Ahlschlager, C., Wilkins, D.: Using magellan to diagnose post-silicon bugs. In: Synopsys Verification Avenue Technical Bulletin, vol. 4, no. 3, p. 15 (2004)

    Google Scholar 

  7. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 174–177. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00768-2_16

    Chapter  Google Scholar 

  8. De Paula, F.: Backspace: formal analysis for post-silicon debug traces. Ph.d. Thesis, University of British Colombia (2012)

    Google Scholar 

  9. Fredrikson, M., Christodorescu, M., Jha, S.: Dynamic behavior matching: a complexity analysis and new approximation algorithms. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 252–267. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6_20

    Chapter  Google Scholar 

  10. Hu, B., Huang, K., Chen, G., Knoll, A.: Evaluation of run-time monitoring methods for real-time events streams. In: ASPDAC (2014)

    Google Scholar 

  11. Mitra, S., Seshia, S.A., Nicolici, N.: Post-silicon validation opportunities, challenges and recent advances. In: DAC (2010)

    Google Scholar 

  12. Nassar, A., Kurdahi, F.J., Elsharkasy, W.: NUVA: architectural support for runtime verication of parametric specications over multicores. In: CASES (2015)

    Google Scholar 

  13. Nguyen, M.D., Wedler, M., Stoffel, D., Kunz, W.: Formal hardware/software co-verification by interval property checking with abstraction. In: DAC, June 2011

    Google Scholar 

  14. Park, S., Mitra, S.: IFRA: instruction footprint recording and analysis for post-silicon bug localization in processors. In: DAC (2008)

    Google Scholar 

  15. Reinbacher, T., Függer, M., Brauer, J.: Runtime verification of embedded real-time systems. Formal Meth. Syst. Des. 44(3), 203–239 (2014)

    Article  MATH  Google Scholar 

  16. Schmidt, B., Villarraga, C., Fehmel, T., Bormann, J., Wedler, M., Nguyen, M., Stoffel, D., Kunz, W.: A new formal verification approach for hardware-dependent embedded system software. IPSJ Trans. Syst. LSI Des. Methodol. 6, 135–145 (2013)

    Article  Google Scholar 

  17. Schuster, T., Meyer, R., Buchty, R., Fossati, L., Berekovic, M.: SoCRocket-a virtual platform for the European space agency SoC development. In: ReCoSoC (2014). http://www.github.com/socrocket

  18. Shojaei, H., Davoodi, A.: Trace signal selection to enhance timing and logic visibility in post-silicon validation. In: ICCAD (2010)

    Google Scholar 

  19. Souyris, J., Pavec, E.L., Himbert, G., Borios, G., Jégu, V., Heckmann, R.: Computing the worst case execution time of an avionics program by abstract interpretation. In: 5th International Workshop on Worst-Case Execution Time Analysis (WCET) (2005)

    Google Scholar 

  20. Vermeulen, B., Goossens, K.: Debugging Systems-on-Chip: Communication-centric and Abstraction-based Techniques. Embedded Systems. Springer, New York (2014)

    Book  Google Scholar 

  21. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution-time problem: overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst. 7(3), 36 (2008)

    Article  Google Scholar 

  22. Yang, J., Touba, N.: Enhancing silicon debug via periodic monitoring. In: Proceedings of Symposium on Defect and Fault Tolerance (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rehab Massoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Massoud, R., Stoppe, J., Große, D., Drechsler, R. (2017). Semi-formal Cycle-Accurate Temporal Execution Traces Reconstruction. In: Abate, A., Geeraerts, G. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2017. Lecture Notes in Computer Science(), vol 10419. Springer, Cham. https://doi.org/10.1007/978-3-319-65765-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65765-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65764-6

  • Online ISBN: 978-3-319-65765-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics