Physico-Mechanical, Thermal, and Morphological Properties of Styrene-co-3-(Trimethoxysilyl)Propyl Methacrylate with Clay Impregnated Wood Polymer Nanocomposites

  • M. R. RahmanEmail author
  • S. Hamdan
  • J. C. H. Lai
Part of the Engineering Materials book series (ENG.MAT.)


In this study, the physico-mechanical, thermal, and morphological properties of styrene-co-3-(trimethoxysilyl)propyl methacrylate (ST-co-SPMA) with clay impregnated wood polymer nanocomposites (WPNCs) were investigated. The WPNCs were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), 3-point bending and free-vibration testing, and Thermogravimetric Analysis (TGA). The FT-IR results showed that the absorbance intensity at 698 cm−1 was higher for ST-co-MSPM-clay-WPNC and ST-

clay-WPNC when compared to styrene wood polymer composite (ST-WPC), ST-co-MSPA-WPC, and raw wood. The XRD result revealed that the d-spacing of WPNCs and WPCs was higher than that of raw wood. The SEM results showed that ST-co-MSPM-clay-WPNC had smoother surfaces when compared to other nanocomposites and raw wood. The modulus of elasticity (MOE), modulus of rupture (MOR), dynamic Young’s moduli (Ed), and thermal stability of ST-co-MSPM-clay-WPNC were considerably higher when compared to wood polymer nanocomposites (WPNCs) and raw wood.


Wood fibers Nanocomposites Mechanical properties Thermal properties 



The authors would like to acknowledge the financial support from Ministry of Higher Education Malaysia, for their financial support (Grant no. FRGS/SG02(01)/1085/2013(31)).


  1. Agubra VA, Owuor PS, Hosur MV (2013) Influence of nanoclay dispersion methods on the mechanical behavior of E-glass/epoxy nanocomposites. Nanomater 3:550–563CrossRefGoogle Scholar
  2. Banks WB, Lawther ML (eds) (1994) Cellulosic polymers blends and composites. Hanser/Garder Publications Inc., CincinnatiGoogle Scholar
  3. Baysal E (2011) Combustion properties of wood impregnated with commercial fertilizers. African J Biotechnol 10:19255–19560Google Scholar
  4. Catauroa M, Papalea F, Lamannaa G, Bollinoa F (2015) Geopolymer/PEG hybrid materials synthesis and investigation of the polymer influence on microstructure and mechanical behavior. Mater Res 18:698–705CrossRefGoogle Scholar
  5. Chang MK, Li SJ (2011) A study of strength and thermal stability of low-density polyethylene grafted maleic anhydride/montmorillonite nanocomposites. In: IEEE international conference on industrial engineering and operational management. Kuala Lumpur, Malaysia, 22–24 Jan 2011Google Scholar
  6. Chen JS, Poliks MD, Ober CK, Zhang Y, Wiesner U, Giannelis E (2002) Study of the interlayer expansion mechanism and thermal-mechanical properties of surface-initiated epoxy nanocomposites. Polym 43:4895–4904CrossRefGoogle Scholar
  7. Chen T, Wu Z, Niu M, Xie Y, Wang X (2016) Effect of Si–Al molar ratio on microstructure and mechanical properties of ultra-low density fiberboard. Eur J Wood Wood Prod 74:151–160CrossRefGoogle Scholar
  8. Donnell A, Dweib MA, Wool RP (2004) Natural fiber composites with plant oil-based resin. Compos Sci Technol 64:1135–1145CrossRefGoogle Scholar
  9. Feist WC, Hon DNS (1984) Chemistry of weathering and protection. Chem Solid Wood 11:401–451CrossRefGoogle Scholar
  10. Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, BerlinGoogle Scholar
  11. Gaboune A, Ray SS, Ait-Kadi A, Riedl B, Bousmina M (2006) Polyethylene/clay nanocomposites prepared by polymerization compounding method. J Nanosci Nanotechnol 6:530–535CrossRefGoogle Scholar
  12. García M, Hidalgo J, Garmendia I, García-Jaca J (2009) Wood-plastics composites with better fire retardancy and durability performance. Compos Part A Appl Sci Manuf 40:1772–1776CrossRefGoogle Scholar
  13. Hamdan S, Rahman R, Ahmed AS, Talib ZA, Islam S (2010) Influence of N,N-dimethylacetamid on the thermal and mechanical properties of polymer-filled wood. BioRes 5:2611–2624Google Scholar
  14. Islam MS, Hamdan S, Rusop M, Rahman MR (2013) Thermal stability and decay resistance properties of tropical wood polymer nanocomposites (WPNC). Adv Mater Res 667:482–489CrossRefGoogle Scholar
  15. Ismail H, Shuhelmy S, Edyham MR (2002) The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites. Eur Polym J 38:39–47CrossRefGoogle Scholar
  16. Karesoja M, Jokinen H, Karjalainen E, Pulkkinen P, Torkkeli M, Soininen A, Ruokolainen J, Tenhu H (2009) Grafting of montmorillonite nano-clay with butyl acrylate (BuA) and methacrylate (MMA) by ATRP. Blends with poly(BuA-co-MMA. J Polym Sci Part A 47(12):3086–3097CrossRefGoogle Scholar
  17. Kim HS, Kim S, Kim HJ, Yang HS (2006) Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochim Acta 451:181–188CrossRefGoogle Scholar
  18. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T (2011) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8:1185–1189CrossRefGoogle Scholar
  19. Kondo T (1996) A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polym 37:393–399CrossRefGoogle Scholar
  20. Kosonen ML, Wang B, Caneba GT, Gardner DJ (2000) Polystyrene/wood composites and hydrophobic wood coatings from water-based hydrophilic-hydrophobic block. Clan Prod Process 2:117–123CrossRefGoogle Scholar
  21. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B Eng 42:856–873CrossRefGoogle Scholar
  22. Kumar S (1994) Chemical modification of wood. Wood Fiber Sci 26:270–280Google Scholar
  23. Levan SL, Tran HC (1990) The role of boron in flame-retardant treatments. Forest Prod Res Soc 1990:39–41Google Scholar
  24. Li YF, Liu YX, Wang XM, Wu QL, Yu HP, Li J (2011) Wood–polymer composites prepared by the in situ polymerization of monomers within wood. Appl Polym Sci 119:3207–3216CrossRefGoogle Scholar
  25. Liodakis S, Bakirtzis D, Dimitrakopoulos AP (2003) Autoignition and thermogravimetric analysis of forest species treated with fire retardants. Thermochim Acta 399:31–42CrossRefGoogle Scholar
  26. Liu Z, Jiang Z, Fei B, Liu X (2013) Thermal decomposition characteristics of chinese fir. BioRes 8:5014–5024Google Scholar
  27. Lu SY, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27:1661–1712CrossRefGoogle Scholar
  28. Lu T, Jiang M, Jiang Z, Hui D, Wang Z, Zhou Z (2013) Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos Part B 51(51):28–34CrossRefGoogle Scholar
  29. Mattos BD, Cademartori PHG, Louren TV, Gatto DA, Magalhaes WLE (2014) Biodeterioration of wood from two fast-growing eucalypts exposed to field test. Int Biodeterior Biodegrad 93:210–215CrossRefGoogle Scholar
  30. Parker RW, Frost RL (1996) The application of drift spectroscopy to the multicomponent analysis of organic chemicals adsorbed on montmorillonite. Clay Miner 44:32–40CrossRefGoogle Scholar
  31. Rahman MR, Hamdan S, Ahmed AS, Islam MS (2010a) Mechanical and biological performance of sodium metaperiodate-impregnated plasticized wood (PW). BioRes 5:1022–1035Google Scholar
  32. Rahman MR, Hamdan S, Ahmed AS, Islam MS (2010b) Mechanical and biological performance of sodium metaperiodate-impregnated plasticized wood (PW). BioRes 5:1022–1035Google Scholar
  33. Rahman MR, Hamdan S, Ahmed AS, Islam MS, Talib ZA, Islam MS, Abdullah WFW, Mat MSC (2011) Thermogravimetric analysis and dynamic Young’s modulus measurement of N,N-dimethylacetamide-impregnated wood polymer composites. J Vinyl Addit Technol 17:177–183CrossRefGoogle Scholar
  34. Rahman MM, Rahman MR, Hamdan S, Hossen MF, Lai JCH, Liew FK (2015) Synthesis of cotton from tossa jute fiber and comparison with original cotton. Int J Polym Sci 2015:1–4CrossRefGoogle Scholar
  35. Rangel-Vázquez NA, Leal-García T (2010) Spectroscopy analysis of chemical modification of cellulose fibers. J Mex Chem Soc 54:192–197Google Scholar
  36. Rashmi Renukappa NM, Suresha B, Devarajaiah RM, Shivakumar KN (2011) Dry sliding wear behaviour of organo-modified montmorillonite filled epoxy nanocomposites using Taguchi’s techniques. Mater Des 32:4528–4536CrossRefGoogle Scholar
  37. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079CrossRefGoogle Scholar
  38. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  39. Rowell RM (2006) Chemical modification of wood: a short review. Wood Mater Sci Eng 1:29–33CrossRefGoogle Scholar
  40. Rowell RM (2014) Acetylation of wood—a review. Intl J Lignocellul Prod 1:1–27Google Scholar
  41. Sanchez-Jimenez PE, Perez-Maqueda LA, Crespo-Amoros JE, Lopez J, Perejon A, Criado JM (2012) Nanoclay nucleation effect in the thermal stabilization of a polymer nanocomposite: a kinetic mechanism change. J Phys Chem 116(21):11797–11807Google Scholar
  42. Stolf DO, Lahr FAR (2004) Wood-polymer composite: physical and mechanical properties of some wood species impregnated with styrene and methyl methacrylate. J Mater Res 7:611–617CrossRefGoogle Scholar
  43. Toh HK (1979) A study of diffusion in polymers using C-14 labelled molecules. Diss Loughbrgh Univ Leicestershire, United Kingdom, pp 49–50Google Scholar
  44. Torrey JD, Bordia RK (2008) Mechanical properties of polymer-derived ceramic composite coatings on steel. J Eur Ceram Soc 28:253–257CrossRefGoogle Scholar
  45. Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigaito O (1993) Swelling behavior of montmorillonite cation exchanged for ω-amino acids by -caprolactam. J Mater Res 8:1174–1178CrossRefGoogle Scholar
  46. Wada M, Heux L, Sugiyama J (2004) Polymorphism of cellulose I family: reinvestigation of cellulose IVl. Biomacromol 5:1385–1391CrossRefGoogle Scholar
  47. Xie W, Gao Z, Pan WP, Hunter D, Singh A, Vaia R (2001) Thermal degradation chemistry of alkyl quaternary ammonium Montmorillonite. Chem Mater 13:2979–2990CrossRefGoogle Scholar
  48. Xu Y, Guo Z, Fang Z, Peng M, Shen L (2013) Combination of double-modified clay and polypropylene-graft-maleic anhydride for the simultaneously improved thermal and mechanical properties of polypropylene. J Appl Polym Sci 128:283–291CrossRefGoogle Scholar
  49. Xu B, Ding J, Feng L, Ding Y, Ge F, Cai Z (2015) Self-cleaning cotton fabrics via combination of photocatalytic TiO2 and superhydrophobic SiO2. Surf Coatings Technol 262:70–76CrossRefGoogle Scholar
  50. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788CrossRefGoogle Scholar
  51. Yao H, You Z, Li L, Goh SW, Lee CH, Yap YK (2013) Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy. Constr Build Mater 38:327–337CrossRefGoogle Scholar
  52. Yunchu H, Peijang Z, Songsheng Q (2000) TG-DTA studies on wood treated with flame-retardants. Holz Als Roh- Und Werkst 58:35–38CrossRefGoogle Scholar
  53. Zhang S, Horrocks AR (2003) A review of flame retardant polypropylene fibres. Prog Polym Sci 28:1517–1538CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversiti Malaysia SarawakKota SamarahanMalaysia

Personalised recommendations