Skip to main content

Physico-Mechanical, Thermal, and Morphological Properties of Styrene-co-3-(Trimethoxysilyl)Propyl Methacrylate with Clay Impregnated Wood Polymer Nanocomposites

  • Chapter
  • First Online:
Wood Polymer Nanocomposites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 781 Accesses

Abstract

In this study, the physico-mechanical, thermal, and morphological properties of styrene-co-3-(trimethoxysilyl)propyl methacrylate (ST-co-SPMA) with clay impregnated wood polymer nanocomposites (WPNCs) were investigated. The WPNCs were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), 3-point bending and free-vibration testing, and Thermogravimetric Analysis (TGA). The FT-IR results showed that the absorbance intensity at 698 cm−1 was higher for ST-co-MSPM-clay-WPNC and ST-

clay-WPNC when compared to styrene wood polymer composite (ST-WPC), ST-co-MSPA-WPC, and raw wood. The XRD result revealed that the d-spacing of WPNCs and WPCs was higher than that of raw wood. The SEM results showed that ST-co-MSPM-clay-WPNC had smoother surfaces when compared to other nanocomposites and raw wood. The modulus of elasticity (MOE), modulus of rupture (MOR), dynamic Young’s moduli (Ed), and thermal stability of ST-co-MSPM-clay-WPNC were considerably higher when compared to wood polymer nanocomposites (WPNCs) and raw wood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agubra VA, Owuor PS, Hosur MV (2013) Influence of nanoclay dispersion methods on the mechanical behavior of E-glass/epoxy nanocomposites. Nanomater 3:550–563

    Article  Google Scholar 

  • Banks WB, Lawther ML (eds) (1994) Cellulosic polymers blends and composites. Hanser/Garder Publications Inc., Cincinnati

    Google Scholar 

  • Baysal E (2011) Combustion properties of wood impregnated with commercial fertilizers. African J Biotechnol 10:19255–19560

    Google Scholar 

  • Catauroa M, Papalea F, Lamannaa G, Bollinoa F (2015) Geopolymer/PEG hybrid materials synthesis and investigation of the polymer influence on microstructure and mechanical behavior. Mater Res 18:698–705

    Article  Google Scholar 

  • Chang MK, Li SJ (2011) A study of strength and thermal stability of low-density polyethylene grafted maleic anhydride/montmorillonite nanocomposites. In: IEEE international conference on industrial engineering and operational management. Kuala Lumpur, Malaysia, 22–24 Jan 2011

    Google Scholar 

  • Chen JS, Poliks MD, Ober CK, Zhang Y, Wiesner U, Giannelis E (2002) Study of the interlayer expansion mechanism and thermal-mechanical properties of surface-initiated epoxy nanocomposites. Polym 43:4895–4904

    Article  Google Scholar 

  • Chen T, Wu Z, Niu M, Xie Y, Wang X (2016) Effect of Si–Al molar ratio on microstructure and mechanical properties of ultra-low density fiberboard. Eur J Wood Wood Prod 74:151–160

    Article  Google Scholar 

  • Donnell A, Dweib MA, Wool RP (2004) Natural fiber composites with plant oil-based resin. Compos Sci Technol 64:1135–1145

    Article  Google Scholar 

  • Feist WC, Hon DNS (1984) Chemistry of weathering and protection. Chem Solid Wood 11:401–451

    Article  Google Scholar 

  • Fengel D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  • Gaboune A, Ray SS, Ait-Kadi A, Riedl B, Bousmina M (2006) Polyethylene/clay nanocomposites prepared by polymerization compounding method. J Nanosci Nanotechnol 6:530–535

    Article  Google Scholar 

  • García M, Hidalgo J, Garmendia I, García-Jaca J (2009) Wood-plastics composites with better fire retardancy and durability performance. Compos Part A Appl Sci Manuf 40:1772–1776

    Article  Google Scholar 

  • Hamdan S, Rahman R, Ahmed AS, Talib ZA, Islam S (2010) Influence of N,N-dimethylacetamid on the thermal and mechanical properties of polymer-filled wood. BioRes 5:2611–2624

    Google Scholar 

  • Islam MS, Hamdan S, Rusop M, Rahman MR (2013) Thermal stability and decay resistance properties of tropical wood polymer nanocomposites (WPNC). Adv Mater Res 667:482–489

    Article  Google Scholar 

  • Ismail H, Shuhelmy S, Edyham MR (2002) The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites. Eur Polym J 38:39–47

    Article  Google Scholar 

  • Karesoja M, Jokinen H, Karjalainen E, Pulkkinen P, Torkkeli M, Soininen A, Ruokolainen J, Tenhu H (2009) Grafting of montmorillonite nano-clay with butyl acrylate (BuA) and methacrylate (MMA) by ATRP. Blends with poly(BuA-co-MMA. J Polym Sci Part A 47(12):3086–3097

    Article  Google Scholar 

  • Kim HS, Kim S, Kim HJ, Yang HS (2006) Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochim Acta 451:181–188

    Article  Google Scholar 

  • Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T (2011) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8:1185–1189

    Article  Google Scholar 

  • Kondo T (1996) A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polym 37:393–399

    Article  Google Scholar 

  • Kosonen ML, Wang B, Caneba GT, Gardner DJ (2000) Polystyrene/wood composites and hydrophobic wood coatings from water-based hydrophilic-hydrophobic block. Clan Prod Process 2:117–123

    Article  Google Scholar 

  • Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B Eng 42:856–873

    Article  Google Scholar 

  • Kumar S (1994) Chemical modification of wood. Wood Fiber Sci 26:270–280

    Google Scholar 

  • Levan SL, Tran HC (1990) The role of boron in flame-retardant treatments. Forest Prod Res Soc 1990:39–41

    Google Scholar 

  • Li YF, Liu YX, Wang XM, Wu QL, Yu HP, Li J (2011) Wood–polymer composites prepared by the in situ polymerization of monomers within wood. Appl Polym Sci 119:3207–3216

    Article  Google Scholar 

  • Liodakis S, Bakirtzis D, Dimitrakopoulos AP (2003) Autoignition and thermogravimetric analysis of forest species treated with fire retardants. Thermochim Acta 399:31–42

    Article  Google Scholar 

  • Liu Z, Jiang Z, Fei B, Liu X (2013) Thermal decomposition characteristics of chinese fir. BioRes 8:5014–5024

    Google Scholar 

  • Lu SY, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27:1661–1712

    Article  Google Scholar 

  • Lu T, Jiang M, Jiang Z, Hui D, Wang Z, Zhou Z (2013) Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos Part B 51(51):28–34

    Article  Google Scholar 

  • Mattos BD, Cademartori PHG, Louren TV, Gatto DA, Magalhaes WLE (2014) Biodeterioration of wood from two fast-growing eucalypts exposed to field test. Int Biodeterior Biodegrad 93:210–215

    Article  Google Scholar 

  • Parker RW, Frost RL (1996) The application of drift spectroscopy to the multicomponent analysis of organic chemicals adsorbed on montmorillonite. Clay Miner 44:32–40

    Article  Google Scholar 

  • Rahman MR, Hamdan S, Ahmed AS, Islam MS (2010a) Mechanical and biological performance of sodium metaperiodate-impregnated plasticized wood (PW). BioRes 5:1022–1035

    Google Scholar 

  • Rahman MR, Hamdan S, Ahmed AS, Islam MS (2010b) Mechanical and biological performance of sodium metaperiodate-impregnated plasticized wood (PW). BioRes 5:1022–1035

    Google Scholar 

  • Rahman MR, Hamdan S, Ahmed AS, Islam MS, Talib ZA, Islam MS, Abdullah WFW, Mat MSC (2011) Thermogravimetric analysis and dynamic Young’s modulus measurement of N,N-dimethylacetamide-impregnated wood polymer composites. J Vinyl Addit Technol 17:177–183

    Article  Google Scholar 

  • Rahman MM, Rahman MR, Hamdan S, Hossen MF, Lai JCH, Liew FK (2015) Synthesis of cotton from tossa jute fiber and comparison with original cotton. Int J Polym Sci 2015:1–4

    Article  Google Scholar 

  • Rangel-Vázquez NA, Leal-García T (2010) Spectroscopy analysis of chemical modification of cellulose fibers. J Mex Chem Soc 54:192–197

    Google Scholar 

  • Rashmi Renukappa NM, Suresha B, Devarajaiah RM, Shivakumar KN (2011) Dry sliding wear behaviour of organo-modified montmorillonite filled epoxy nanocomposites using Taguchi’s techniques. Mater Des 32:4528–4536

    Article  Google Scholar 

  • Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079

    Article  Google Scholar 

  • Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  Google Scholar 

  • Rowell RM (2006) Chemical modification of wood: a short review. Wood Mater Sci Eng 1:29–33

    Article  Google Scholar 

  • Rowell RM (2014) Acetylation of wood—a review. Intl J Lignocellul Prod 1:1–27

    Google Scholar 

  • Sanchez-Jimenez PE, Perez-Maqueda LA, Crespo-Amoros JE, Lopez J, Perejon A, Criado JM (2012) Nanoclay nucleation effect in the thermal stabilization of a polymer nanocomposite: a kinetic mechanism change. J Phys Chem 116(21):11797–11807

    Google Scholar 

  • Stolf DO, Lahr FAR (2004) Wood-polymer composite: physical and mechanical properties of some wood species impregnated with styrene and methyl methacrylate. J Mater Res 7:611–617

    Article  Google Scholar 

  • Toh HK (1979) A study of diffusion in polymers using C-14 labelled molecules. Diss Loughbrgh Univ Leicestershire, United Kingdom, pp 49–50

    Google Scholar 

  • Torrey JD, Bordia RK (2008) Mechanical properties of polymer-derived ceramic composite coatings on steel. J Eur Ceram Soc 28:253–257

    Article  Google Scholar 

  • Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigaito O (1993) Swelling behavior of montmorillonite cation exchanged for ω-amino acids by -caprolactam. J Mater Res 8:1174–1178

    Article  Google Scholar 

  • Wada M, Heux L, Sugiyama J (2004) Polymorphism of cellulose I family: reinvestigation of cellulose IVl. Biomacromol 5:1385–1391

    Article  Google Scholar 

  • Xie W, Gao Z, Pan WP, Hunter D, Singh A, Vaia R (2001) Thermal degradation chemistry of alkyl quaternary ammonium Montmorillonite. Chem Mater 13:2979–2990

    Article  Google Scholar 

  • Xu Y, Guo Z, Fang Z, Peng M, Shen L (2013) Combination of double-modified clay and polypropylene-graft-maleic anhydride for the simultaneously improved thermal and mechanical properties of polypropylene. J Appl Polym Sci 128:283–291

    Article  Google Scholar 

  • Xu B, Ding J, Feng L, Ding Y, Ge F, Cai Z (2015) Self-cleaning cotton fabrics via combination of photocatalytic TiO2 and superhydrophobic SiO2. Surf Coatings Technol 262:70–76

    Article  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  Google Scholar 

  • Yao H, You Z, Li L, Goh SW, Lee CH, Yap YK (2013) Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy. Constr Build Mater 38:327–337

    Article  Google Scholar 

  • Yunchu H, Peijang Z, Songsheng Q (2000) TG-DTA studies on wood treated with flame-retardants. Holz Als Roh- Und Werkst 58:35–38

    Article  Google Scholar 

  • Zhang S, Horrocks AR (2003) A review of flame retardant polypropylene fibres. Prog Polym Sci 28:1517–1538

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from Ministry of Higher Education Malaysia, for their financial support (Grant no. FRGS/SG02(01)/1085/2013(31)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Rahman .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Rahman, M.R., Hamdan, S., Lai, J.C.H. (2018). Physico-Mechanical, Thermal, and Morphological Properties of Styrene-co-3-(Trimethoxysilyl)Propyl Methacrylate with Clay Impregnated Wood Polymer Nanocomposites. In: Wood Polymer Nanocomposites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-65735-6_12

Download citation

Publish with us

Policies and ethics