Physico-mechanical, Morphological, and Thermal Properties of Clay Dispersed Styrene-co-Maleic Acid Impregnated Wood Polymer Nanocomposites

  • M. R. RahmanEmail author
  • S. Hamdan
  • J. C. H. Lai
Part of the Engineering Materials book series (ENG.MAT.)


In this study, we evaluate the physical, mechanical, and morphological properties of a clay dispersed styrene-co-glycidyl methacrylate (ST-co-GMA) impregnated wood polymer nanocomposite (WPNC). The WPNC was characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), 3-point bending, and free-vibration testing. The FT-IR results showed that the absorbance at 1730 cm−1 was increased for ST-co-GMA-clay-WPNC compared with other nanocomposites and the raw material. The SEM results showed that ST-co-GMA-clay-WPNC had a smoother surface than other nanocomposites and raw wood. The modulus of elasticity (MOE), modulus of rupture (MOR), and dynamic Young’s moduli (Ed) of WPNCs were considerably increased compared to wood polymer nanocomposites (WPNCs) and raw wood. The raw wood exhibited a higher water uptake (WU) than WPNCs.


ST-co-GMA Nanoclay Mechanical properties Morphological properties 



The authors would like to acknowledge the financial support from Research and Innovation Management Centre, Universiti Malaysia Sarawak under Fund with Grant no. (FRGS/SG02(01)/1085/2013(31)).


  1. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng, R 28(1):1–63CrossRefGoogle Scholar
  2. Bodirlau R, Teaca CA (2009) Fourier transform infrared spectroscopy and thermal analysis of lignocellulosic fillers treated with organic anhydrides. Romanian Rep Phy 54(1–2):93–104Google Scholar
  3. Cai X, Riedl B, Zhang SY, Wan H (2008) The impact of interphase between wood, melamine-urea-formaldehyde and layered silicate on the performance of wood polymer nanocomposites. Compos Part A 39:727–737CrossRefGoogle Scholar
  4. Chen JS, Poliks MD, Ober CK, Zhang Y, Wiesner U, Giannelis E (2002) Study of the interlayer expansion mechanism and thermal-mechanical properties of surface-initiated epoxy nanocomposites. Polym 43(18):4895–4904CrossRefGoogle Scholar
  5. Chen T, Wu Z, Niu M, Xie Y, Wang X (2016) Effect of Si-Al molar ratio on microstructure and mechanical properties of ultra-low density fiberboard. Eur J Wood Wood Prod 74(2):151–160CrossRefGoogle Scholar
  6. Chowdary MS, Niranjan MSR (2015) Effect of nanoclay on the mechanical properties of polyester and S-glass fiber (Al). Int J Adv Sci Technol 47:35–42CrossRefGoogle Scholar
  7. Devi RR, Maji TK (2007) Effect of glycidyl methacrylate on the physical properties of wood polymer composites. Polym Compos 28(1):1–5CrossRefGoogle Scholar
  8. Fan M, Ndikontar MK, Zhou X, Ngamveng JN (2012) Cement-bonded composites made from tropical wood: compatibility of wood and cement. Const Build Mater 36:135–140CrossRefGoogle Scholar
  9. Garcia M, Garmendia HI, Garcia-Jaca J (2009) Wood-plastics composites with better fire retardancy and durability performance. Compos Part A 40(11):1772–1776CrossRefGoogle Scholar
  10. Greil P, Lifka T, Kaindl A (1998) Biomorphic cellular silicon carbide ceramics from wood: II. Mechanical properties. J Eur Ceram Soc 18(14):1975–1983CrossRefGoogle Scholar
  11. Haraguchi K, Li HJ, Matsuda K, Takeisa T, Elliott E (2005) Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels. Macromol 38(8):3482–3490CrossRefGoogle Scholar
  12. Hazarika A, Deka BK, Maji TK (2015) Melamine-formaldehyde acrylamide and gum polymer impregnated wood polymer nanocomposite. J Bio Eng 12(2):304–315CrossRefGoogle Scholar
  13. Hill CAS, Cetin NS, Quinney H, Ewen RJ (2001) An investigation of the potential for chemical modification and subsequent polymeric grafting as a means of protecting wood against photodegradation. Polym Degrad Stabil 72(1):133–139CrossRefGoogle Scholar
  14. Islam MS, Hamdan S, Hasan M, Ahmed AS, Rahman MR (2012) Effect of coupling reactions on the mechanical and biological properties of tropical wood polymer composites (WPC). Int Biodeter Biodegrad 72:108–113CrossRefGoogle Scholar
  15. Jeon IY, Baek JB (2010) Nanocomposites derived from polymers and inorganic nanoparticles. Mater 3(6):3654–3674CrossRefGoogle Scholar
  16. Kamei I, Hirota Y, Meguro S (2012) Integrated delignification and simultaneous saccharification and fermentation of hardwood by a white-rot fungus, Phlebia sp. MG-60. Biores Technol 126:137–141CrossRefGoogle Scholar
  17. Kartal SN, Yoshimura T, Inamura Y (2004) Decat and termite resistance of boron-treated and chemically modified wood by in situ co-polymerization of allyl glycidyl ether (AGE) with methyl methacrylate (MMA). Int Biodeter Biodegrad 53(2):111–117CrossRefGoogle Scholar
  18. Kim HS, Kim S, Kim HJ, Yang HS (2006) Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochim Acta 451(1–2):181–188CrossRefGoogle Scholar
  19. Kim HS, Lee BH, Choi SW, Kim S, Kim HJ (2007) The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Compos Part A 38(6):1473–1482CrossRefGoogle Scholar
  20. Kondo T, Sawatari C (1996) A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polym 37(3):393–399CrossRefGoogle Scholar
  21. Krestchmann DE (2010) Mechanical properties of wood. Wood Handbook-Wood as an engineering material. Forest Products Laboratory, United States, pp 1–46Google Scholar
  22. Li YF, Liu YX, Wang XM, Wu QL, Yu HP, Li J (2011) Wood polymer composites prepared by the in situ polymerization of monomers within wood. J Appl Polym Sci 119(6):3207–3216CrossRefGoogle Scholar
  23. Li Y, Liu Z, Dong X, Fu Y, Liu Y (2013) Comparison of decay resistance of wood and wood polymer composite prepared by in-situ polymerization of monomers. Int Biodeter Biodegrad 84:401–406CrossRefGoogle Scholar
  24. Liu Z, Jiang Z, Fei B, Liu X (2013) Thermal decomposition characteristic of chinese fir. BioRes 8(4):5014–5024Google Scholar
  25. Liu R, Sun W, Cao J, Wang J (2016) Surface properties of in situ organo-montmorillonite modified wood flour and the influence on mechanical properties of composites with polypropylene. Appl Surf Sci 361:234–241CrossRefGoogle Scholar
  26. Lopes MA, Silva RF, Monteiro FJ, Santos JD (2000) Microstructural dependence of Young’s and shear moduli of P2O5 glass reinforced hydroxyapatite for biomedical applications. Biomater 21(7):749–754CrossRefGoogle Scholar
  27. Malkapuran R, Kumar V, Negi YS (2008) Recent development in natural fiber reinforced polypropylene composites. J Reinf Plast Compos 28(10):1169–1189CrossRefGoogle Scholar
  28. Ndiaye D, Tidjani A (2012) Effects of coupling agents on thermal behavior and mechanical properties of wood flour/polypropylene composites. J Compos Mater 46(24):3067–3075CrossRefGoogle Scholar
  29. Pandey KK (2005) Study of the effect of photo-irritation on the surface chemistry of wood. Polym Degrad Stabil 90(1):9–20CrossRefGoogle Scholar
  30. Parker RW, Frost RI (1996) The application of drift spectroscopy to the multicomponent analysis of organic chemicals adsorbed on montmorillonite. Clay Miner 44(1):32–40CrossRefGoogle Scholar
  31. Pawar PM, Koutaniemi S, Tenkanen M, Mellerowicz EJ (2013) Acetylation of woody lignocellulosic: significance and regulation. Front Plant Sci 21(4):118Google Scholar
  32. Popescu MC, Froidevaux J, Navi P, Popescu CM (2013) Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy. J Mol Struct 1033:176–186CrossRefGoogle Scholar
  33. Rahman MR, Hamdan S, Islam MS (2010) Mechanical and biological performance of sodium metaperiodate-impregnated plasticized wood (pw). BioRes 5(2):1022–1035Google Scholar
  34. Rahman RM, Hamdan S, Ahmed AS, Islam MS, Talib ZA, Abdullah WFW, Che Mat MS (2011) Thermogravimetric analysis and dynamic Young’s modulus measurement of N,N-dimethylacetamide-impregnated wood polymer composites. J Vinyl Addit Technol 17(3):177–183CrossRefGoogle Scholar
  35. Rahman MR, Hamdan S, Hashim DMA, Islam MS, Takagi H (2014) Bamboo fiber polypropylene composites: Effect of fiber treatment and nanoclay on mechanical and thermal properties. J Vinyl Addit Technol 21(4):253–258CrossRefGoogle Scholar
  36. Rath J, Wolfinger MG, Steiner G, Krammer G, Barontini F, Cozzani V (2003) Heat of wood pyrolysis. Fuel 82(1):81–91CrossRefGoogle Scholar
  37. Rowell RM (2006) Chemical modification of wood: a short review. Wood Mater Sci Eng 1:29–33CrossRefGoogle Scholar
  38. Sanchez-Jimenez PE, Perez-Maqueda LA, Crespo-Amoros JE, Lopez J, Perejon A, Criado JM (2012) Nanoclay nucleation effect in the thermal stabilization of a polymer nanocomposite: a kinetic mechanism change. J Phy Chem C 116(21):11797–11807CrossRefGoogle Scholar
  39. Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36(1):23–40CrossRefGoogle Scholar
  40. Silwa F, Bounia NE, Charrier F, Marin G, Malet F (2012) Mechanical and interfacial properties of wood and bio-based thermoplastic composite. Compos Sci Technol 72(14):1733–1740CrossRefGoogle Scholar
  41. Simonsen J, Jacobson R, Rowell R (1997) Wood fiber reinforcement of styrene-maleic anhydride copolymers. J Appl Polym Sci 68(10):1567–1573CrossRefGoogle Scholar
  42. Toh HK (1979) Dissertation Loughborough University, 1979Google Scholar
  43. Usuki A, Kojima Y, Kawasumi M, Okada A, Fukus Y (1993) Swelling behaviour of montmorillonite cation exchanged for ώ-amino acids by caprolactam. J Mater Res 8(5):1174–1178CrossRefGoogle Scholar
  44. Victor A, Agubra VA, Owuor PS, Hosur MV (2013) Influence of nanoclay dispersion methods on the mechanical behaviour of E-glass/epoxy nanocomposites. Nanomater 3(3):550–563CrossRefGoogle Scholar
  45. Wada M, Heux L, Sugiyama J (2004) Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromol 5(4):1385–1391CrossRefGoogle Scholar
  46. Wolfenden JE, Kinzy MS (1997) Measurements of dynamic Young’s modulus and damping of a chemical-vapor infiltrated SiC/SiC composites. J Mater Sci Lett 16(9):708–711CrossRefGoogle Scholar
  47. Xiao Z, Xie Y, Adamopoulos S, Mai C (2012) Effects of chemical modification with glutaraldehyde on the weathering performance of Scots pine sapwood. Wood Sci Technol 46(4):749–767CrossRefGoogle Scholar
  48. Xie W, Gao Z, Pan WP, Hunter D, Singh A, Vaia R (2001) Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem Mater 13(9):2979–2990CrossRefGoogle Scholar
  49. Xu B, Ding J, Feng L, Ding Y, Ge F, Cai Z (2015) Self-cleaning cotton fabrics via combination of photocatalytic TiO2 and superhydrophobic SiO2. Surf Coating Technol 262:70–76CrossRefGoogle Scholar
  50. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristic of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788CrossRefGoogle Scholar
  51. Yao H, You Z, Li L, Goh SW, Lee CH, Yap YK, Shi X (2013) Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy. Const Build Mater 38:327–337CrossRefGoogle Scholar
  52. Zhao Y, Wang K, Zhu F, Xue P, Jia M (2006) Properties of poly(vinyl chloride)/wood flour/montmorillonite composites: effects of coupling agents and layered silicate. Polym Degrad Stabil 91(12):2874–2883CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversiti Malaysia SarawakKota SamarahanMalaysia

Personalised recommendations