Skip to main content

In Vivo Reprogramming Towards Pluripotency for Tissue Repair and Regeneration

  • Chapter
  • First Online:
In Vivo Reprogramming in Regenerative Medicine

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 451 Accesses

Abstract

The generation of pluripotent-like, proliferative cells within an injured, aged or degenerated tissue via direct in vivo reprogramming (OSKM overexpression) has been proposed as a new therapeutic avenue to tackle conditions in which the regenerative capabilities of the organism cannot cope with the magnitude of cell loss. Thanks to their capacity to proliferate and to re-differentiate into mature phenotypes, in vivo reprogrammed cells could act as an in situ source of replacement cells, avoiding the challenges associated to ex vivo cell therapy. In this Chapter, we discuss this and other opportunities offered by the in vivo overexpression of reprogramming factors (OSKM) and analyse the challenges ahead of clinical translation of this strategy. Encouraging, yet scarce, studies that confirm enhanced regeneration following in vivo OSKM overexpression in different models of tissue injury are also discussed, with special focus on induction schemes specifically designed to avoid tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banga A, Akinci E, Greder LV, Dutton JR, Slack JMW. In vivo reprogramming of Sox9+ cells in the liver to insulin-secreting ducts. Proc Natl Acad Sci U S A. 2012;109(38):15336–41. doi:10.1073/pnas.1201701109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vivien C, Scerbo P, Girardot F, Le Blay K, Demeneix BA, Coen L. Non-viral expression of mouse Oct4, Sox2, and Klf4 transcription factors efficiently reprograms tadpole muscle fibers in vivo. J Biol Chem. 2012;287(10):7427–35. doi:10.1074/jbc.M111.324368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yilmazer A, de Lazaro I, Bussy C, Kostarelos K. In vivo cell reprogramming towards pluripotency by virus-free overexpression of defined factors. PLoS One. 2013;8(1):e54754. doi:10.1371/journal.pone.0054754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abad M, Mosteiro L, Pantoja C, Canamero M, Rayon T, Ors I, Grana O, Megias D, Dominguez O, Martinez D, Manzanares M, Ortega S, Serrano M. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature. 2013;502:340–5. doi:10.1038/nature12586.

    Article  CAS  PubMed  Google Scholar 

  5. Task Force on the management of STseamiotESoC, Steg PG, James SK, Atar D, Badano LP, Blomstrom-Lundqvist C, Borger MA, Di Mario C, Dickstein K, Ducrocq G, Fernandez-Aviles F, Gershlick AH, Giannuzzi P, Halvorsen S, Huber K, Juni P, Kastrati A, Knuuti J, Lenzen MJ, Mahaffey KW, Valgimigli M, van’t Hof A, Widimsky P, Zahger D. ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33(20):2569–619. doi:10.1093/eurheartj/ehs215.

    Article  Google Scholar 

  6. Chan SJ, Love C, Spector M, Cool SM, Nurcombe V, Lo EH. Endogenous regeneration: engineering growth factors for stroke. Neurochem Int. 2017; doi:10.1016/j.neuint.2017.03.024.

  7. de Lazaro I, Kostarelos K. In vivo cell reprogramming to pluripotency: exploring a novel tool for cell replenishment and tissue regeneration. Biochem Soc Trans. 2014;42(3):711–6.

    Article  Google Scholar 

  8. Ohnishi K, Semi K, Yamamoto T, Shimizu M, Tanaka A, Mitsunaga K, Okita K, Osafune K, Arioka Y, Maeda T, Soejima H, Moriwaki H, Yamanaka S, Woltjen K, Yamada Y. Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell. 2014;156(4):663–77. doi:10.1016/j.cell.2014.01.005.

    Article  CAS  PubMed  Google Scholar 

  9. Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010;464(7288):606–9. doi:10.1038/nature08899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sandoval-Guzman T, Wang H, Khattak S, Schuez M, Roensch K, Nacu E, Tazaki A, Joven A, Tanaka EM, Simon A. Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell. 2014;14(2):174–87. doi:10.1016/j.stem.2013.11.007.

    Article  CAS  PubMed  Google Scholar 

  11. Brockes JP, Kumar A. Comparative aspects of animal regeneration. Annu Rev Cell Dev Biol. 2008;24:525–49. doi:10.1146/annurev.cellbio.24.110707.175336.

    Article  CAS  PubMed  Google Scholar 

  12. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078–80. doi:10.1126/science.1200708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102. doi:10.1126/science.1164680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ausoni S, Sartore S. From fish to amphibians to mammals: in search of novel strategies to optimize cardiac regeneration. J Cell Biol. 2009;184(3):357–64. doi:10.1083/jcb.200810094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tata PR, Mou H, Pardo-Saganta A, Zhao R, Prabhu M, Law BM, Vinarsky V, Cho JL, Breton S, Sahay A, Medoff BD, Rajagopal J. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature. 2013;503(7475):218–23. doi:10.1038/nature12777.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Odelberg SJ, Kollhoff A, Keating MT. Dedifferentiation of mammalian myotubes induced by msx1. Cell. 2000;103(7):1099–109. doi:10.1016/s0092-8674(00)00212-9.

    Article  CAS  PubMed  Google Scholar 

  17. Aguirre A, Montserrat N, Zacchigna S, Nivet E, Hishida T, Krause MN, Kurian L, Ocampo A, Vazquez-Ferrer E, Rodriguez-Esteban C, Kumar S, Moresco JJ, Yates JR 3rd, Campistol JM, Sancho-Martinez I, Giacca M, Izpisua Belmonte JC. In vivo activation of a conserved microRNA program induces mammalian heart regeneration. Cell Stem Cell. 2014;15(5):589–604. doi:10.1016/j.stem.2014.10.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xin M, Kim Y, Sutherland LB, Murakami M, Qi X, McAnally J, Porrello ER, Mahmoud AI, Tan W, Shelton JM, Richardson JA, Sadek HA, Bassel-Duby R, Olson EN. Hippo pathway effector yap promotes cardiac regeneration. Proc Natl Acad Sci U S A. 2013;110(34):13839–44. doi:10.1073/pnas.1313192110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ocampo A, Reddy P, Martinez-Redondo P, Platero-Luengo A, Hatanaka F, Hishida T, Li M, Lam D, Kurita M, Beyret E, Araoka T, Vazquez-Ferrer E, Donoso D, Roman JL, Xu J, Rodriguez Esteban C, Nunez G, Nunez Delicado E, Campistol JM, Guillen I, Guillen P, Izpisua Belmonte JC. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell. 2016;167(7):1719–1733.e1712. doi:10.1016/j.cell.2016.11.052.

    Article  CAS  PubMed  Google Scholar 

  20. Gao X, Wang X, Xiong W, Chen J. In vivo reprogramming reactive glia into iPSCs to produce new neurons in the cortex following traumatic brain injury. Sci Rep. 2016;6:22490. doi:10.1038/srep22490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de Lazaro I, Yilmazer A, Nam Y, Qubisi S, Razak F, Cossu G, Kostarelos K. Non-viral induction of transient cell reprogramming in skeletal muscle to enhance tissue regeneration. bioRxiv. 2017; doi:10.1101/101188.

  22. de Lazaro I, Kostarelos K. Engineering cell fate for tissue regeneration by in vivo transdifferentiation. Stem Cell Rev. 2016;12(1):129–39. doi:10.1007/s12015-015-9624-6.

    Article  PubMed  Google Scholar 

  23. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi:10.1016/j.cell.2006.07.024.

    Article  CAS  PubMed  Google Scholar 

  24. Staerk J, Dawlaty MM, Gao Q, Maetzel D, Hanna J, Sommer CA, Mostoslavsky G, Jaenisch R. Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell. 2010;7(1):20–4. doi:10.1016/j.stem.2010.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science. 2008;321(5889):699–702. doi:10.1126/science.1154884.

    Article  CAS  PubMed  Google Scholar 

  26. Stadtfeld M, Brennand K, Hochedlinger K. Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol. 2008;18(12):890–4. doi:10.1016/j.cub.2008.05.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chiche A, Le Roux I, von Joest M, Sakai H, Aguin SB, Cazin C, Salam R, Fiette L, Alegria O, Flamant P, Tajbakhsh S, Li H. Injury-induced senescence enables in vivo reprogramming in skeletal muscle. Cell Stem Cell. 2017; doi:10.1016/j.stem.2016.11.020.

  28. Murry CE, Kay MA, Bartosek T, Hauschka SD, Schwartz SM. Muscle differentiation during repair of myocardial necrosis in rats via gene transfer with MyoD. J Clin Invest. 1996;98(10):2209–17. doi:10.1172/JCI119030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD, Srivastava D. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 2012;485(7400):593–8. doi:10.1038/nature11044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Inagawa K, Miyamoto K, Yamakawa H, Muraoka N, Sadahiro T, Umei T, Wada R, Katsumata Y, Kaneda R, Nakade K, Kurihara C, Obata Y, Miyake K, Fukuda K, Ieda M. Induction of cardiomyocyte-like cells in infarct hearts by gene transfer of Gata4, Mef2c, and Tbx5. Circ Res. 2012;111(9):1147–56. doi:10.1161/CIRCRESAHA.112.271148.

    Article  CAS  PubMed  Google Scholar 

  31. Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG, Hill JA, Bassel-Duby R, Olson EN. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485(7400):599–604. doi:10.1038/nature11139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, Zhang Z, Rosenberg P, Mirotsou M, Dzau VJ. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res. 2012;110(11):1465–73. doi:10.1161/CIRCRESAHA.112.269035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jayawardena TM, Finch EA, Zhang L, Zhang H, Hodgkinson CP, Pratt RE, Rosenberg PB, Mirotsou M, Dzau VJ. MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function. Circ Res. 2015;116(3):418–24. doi:10.1161/CIRCRESAHA.116.304510.

    Article  CAS  PubMed  Google Scholar 

  34. Kapoor N, Liang W, Marban E, Cho HC. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat Biotechnol. 2013;31(1):54–62. doi:10.1038/nbt.2465.

    Article  CAS  PubMed  Google Scholar 

  35. Hu YF, Dawkins JF, Cho HC, Marban E, Cingolani E. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block. Sci Transl Med. 2014;6(245):245ra294. doi:10.1126/scitranslmed.3008681.

    Article  Google Scholar 

  36. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 2008;455(7213):627–32. doi:10.1038/nature07314.

    Article  CAS  PubMed  Google Scholar 

  37. Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, Barshack I, Seijffers R, Kopolovic J, Kaiser N, Karasik A. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med. 2000;6(5):568–72. doi:10.1038/75050.

    Article  CAS  PubMed  Google Scholar 

  38. Ber I, Shternhall K, Perl S, Ohanuna Z, Goldberg I, Barshack I, Benvenisti-Zarum L, Meivar-Levy I, Ferber S. Functional, persistent, and extended liver to pancreas transdifferentiation. J Biol Chem. 2003;278(34):31950–7. doi:10.1074/jbc.M303127200.

    Article  CAS  PubMed  Google Scholar 

  39. Miyatsuka T, Kaneto H, Kajimoto Y, Hirota S, Arakawa Y, Fujitani Y, Umayahara Y, Watada H, Yamasaki Y, Magnuson MA, Miyazaki J, Hori M. Ectopically expressed PDX-1 in liver initiates endocrine and exocrine pancreas differentiation but causes dysmorphogenesis. Biochem Biophys Res Commun. 2003;310(3):1017–25. doi:10.1016/j.bbrc.2003.09.108.

    Article  CAS  PubMed  Google Scholar 

  40. Kojima H, Fujimiya M, Matsumura K, Younan P, Imaeda H, Maeda M, Chan L. NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat Med. 2003;9(5):596–603. doi:10.1038/nm867.

    Article  CAS  PubMed  Google Scholar 

  41. Kaneto H, Nakatani Y, Miyatsuka T, Matsuoka TA, Matsuhisa M, Hori M, Yamasaki Y. PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes. 2005;54(4):1009–22. doi:10.2337/diabetes.54.4.1009.

    Article  CAS  PubMed  Google Scholar 

  42. Yechoor V, Liu V, Espiritu C, Paul A, Oka K, Kojima H, Chan L. Neurogenin3 is sufficient for transdetermination of hepatic progenitor cells into neo-islets in vivo but not transdifferentiation of hepatocytes. Dev Cell. 2009;16(3):358–73. doi:10.1016/j.devcel.2009.01.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang XF, Ren LW, Yang L, Deng CY, Li FR. In vivo direct reprogramming of liver cells to insulin producing cells by virus-free overexpression of defined factors. Endocr J. 2017;64(3):291–302. doi:10.1507/endocrj.EJ16-0463.

    Article  PubMed  Google Scholar 

  44. Niu W, Zang T, Zou Y, Fang S, Smith DK, Bachoo R, Zhang CL. In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat Cell Biol. 2013;15(10):1164–75. doi:10.1038/ncb2843.

    Article  CAS  PubMed  Google Scholar 

  45. Su Z, Niu W, Liu ML, Zou Y, Zhang CL. In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun. 2014;5:3338. doi:10.1038/ncomms4338.

    PubMed  PubMed Central  Google Scholar 

  46. Niu W, Zang T, Smith DK, Vue TY, Zou Y, Bachoo R, Johnson JE, Zhang CL. SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Rep. 2015; doi:10.1016/j.stemcr.2015.03.006.

  47. Torper O, Pfisterer U, Wolf DA, Pereira M, Lau S, Jakobsson J, Bjorklund A, Grealish S, Parmar M. Generation of induced neurons via direct conversion in vivo. Proc Natl Acad Sci U S A. 2013;110(17):7038–43. doi:10.1073/pnas.1303829110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rivetti di Val Cervo P, Romanov RA, Spigolon G, Masini D, Martin-Montanez E, Toledo EM, La Manno G, Feyder M, Pifl C, Ng YH, Sanchez SP, Linnarsson S, Wernig M, Harkany T, Fisone G, Arenas E. Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model. Nat Biotechnol. 2017;35(5):444–52. doi:10.1038/nbt.3835.

    Article  PubMed  Google Scholar 

  49. Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell. 2014;14(2):188–202. doi:10.1016/j.stem.2013.12.001.

    Article  CAS  PubMed  Google Scholar 

  50. Weinberg MS, Criswell HE, Powell SK, Bhatt AP, McCown TJ. Viral vector reprogramming of adult resident striatal oligodendrocytes into functional neurons. Mol Ther. 2017;25(4):928–34. doi:10.1016/j.ymthe.2017.01.016.

    Article  CAS  PubMed  Google Scholar 

  51. Rouaux C, Arlotta P. Direct lineage reprogramming of post-mitotic callosal neurons into corticofugal neurons in vivo. Nat Cell Biol. 2013;15(2):214–21. doi:10.1038/ncb2660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. De la Rossa A, Bellone C, Golding B, Vitali I, Moss J, Toni N, Luscher C, Jabaudon D. In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons. Nat Neurosci. 2013;16(2):193–200. doi:10.1038/nn.3299.

    Article  PubMed  Google Scholar 

  53. Brunt KR, Weisel RD, Li RK. Stem cells and regenerative medicine - future perspectives. Can J Physiol Pharmacol. 2012;90(3):327–35. doi:10.1139/y2012-007.

    Article  CAS  PubMed  Google Scholar 

  54. de Lazaro I, Yilmazer A, Kostarelos K. Induced pluripotent stem (iPS) cells: a new source for cell-based therapeutics? J Control Release. 2014;185:37–44. doi:10.1016/j.jconrel.2014.04.011.

    Article  PubMed  Google Scholar 

  55. Evans MD, Kelley J. US attitudes toward human embryonic stem cell research. Nat Biotechnol. 2011;29(6):484–8. doi:10.1038/nbt.1891.

    Article  CAS  PubMed  Google Scholar 

  56. Wilmut I. Consternation and confusion following EU patent judgment. Cell Stem Cell. 2011;9(6):498–9. doi:10.1016/j.stem.2011.11.002.

    Article  CAS  PubMed  Google Scholar 

  57. Volarevic V, Ljujic B, Stojkovic P, Lukic A, Arsenijevic N, Stojkovic M. Human stem cell research and regenerative medicine--present and future. Br Med Bull. 2011;99:155–68. doi:10.1093/bmb/ldr027.

    Article  PubMed  Google Scholar 

  58. Forsberg M, Hovatta O. Challenges for the therapeutic use of pluripotent stem derived cells. Front Physiol. 2012;3:19. doi:10.3389/fphys.2012.00019.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nakamura M, Okano H. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells. Cell Res. 2013;23(1):70–80. doi:10.1038/cr.2012.171.

    Article  CAS  PubMed  Google Scholar 

  60. Lowry WE, Quan WL. Roadblocks en route to the clinical application of induced pluripotent stem cells. J Cell Sci. 2010;123(Pt 5):643–51. doi:10.1242/jcs.054304.

    Article  CAS  PubMed  Google Scholar 

  61. Mosteiro L, Pantoja C, Alcazar N, Marion RM, Chondronasiou D, Rovira M, Fernandez-Marcos PJ, Munoz-Martin M, Blanco-Aparicio C, Pastor J, Gomez-Lopez G, De Martino A, Blasco MA, Abad M, Serrano M. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science. 2016;354(6315) doi:10.1126/science.aaf4445.

  62. Marion RM, Lopez de Silanes I, Mosteiro L, Gamache B, Abad M, Guerra C, Megias D, Serrano M, Blasco MA. Common telomere changes during in vivo reprogramming and early stages of tumorigenesis. Stem Cell Rep. 2017;8(2):460–75. doi:10.1016/j.stemcr.2017.01.001.

    Article  CAS  Google Scholar 

  63. de Lazaro I, Cossu G, Kostarelos K. Transient transcription factor (OSKM) expression is key towards clinical translation of in vivo cell reprogramming. EMBO Mol Med. 2017; doi:10.15252/emmm.201707650.

  64. Wernig M, Lengner CJ, Hanna J, Lodato MA, Steine E, Foreman R, Staerk J, Markoulaki S, Jaenisch R. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol. 2008;26(8):916–24. doi:10.1038/nbt1483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stadtfeld M, Maherali N, Borkent M, Hochedlinger K. A reprogrammable mouse strain from gene-targeted embryonic stem cells. Nat Methods. 2010;7(1):53–5. doi:10.1038/nmeth.1409.

    Article  CAS  PubMed  Google Scholar 

  66. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949 Pt 1):1465–8.

    Article  CAS  PubMed  Google Scholar 

  67. Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 1999;6(7):1258–66. doi:10.1038/sj.gt.3300947.

    Article  CAS  PubMed  Google Scholar 

  68. Alino SF, Herrero MJ, Noguera I, Dasi F, Sanchez M. Pig liver gene therapy by noninvasive interventionist catheterism. Gene Ther. 2007;14(4):334–43. doi:10.1038/sj.gt.3302873.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Irene de Lázaro or Kostas Kostarelos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Lázaro, I., Kostarelos, K. (2017). In Vivo Reprogramming Towards Pluripotency for Tissue Repair and Regeneration. In: Yilmazer, A. (eds) In Vivo Reprogramming in Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-65720-2_6

Download citation

Publish with us

Policies and ethics