Skip to main content

Synthesis and Characterization of Micro-Thick TiO2 and HfO2 Memristors

  • Chapter
  • First Online:
Memristor Technology: Synthesis and Modeling for Sensing and Security Applications

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

Solgel/drop-coated micro-thick TiO2 memristors are investigated and developed for sensing applications. Devices constructed with coated aluminum (Al) electrodes exhibit unipolar IV characteristics with dynamic turn-on voltage and progressive ROFF/RON ratio loss under applied bias. Endurance failure of micro-thick Al/Al stacks is ascribed to gradual passivation of Al surface resulting from an electrically enhanced oxygen-ion diffusion. By exchanging a single Al contact with higher work-function copper (Cu) metal, two distinct superimposed TiO2 phases are formed. After initial forming, the hybrid stack could achieve a bipolar memristance, with high ROFF/RON (up to 106), and over 10 switching cycles at low operating voltages (±1 V). This chapter also presents micro-thick memristors which are fabricated using alternatively the hafnium-oxide (HfO2) chemistry for the active material. The main focus of the micro-thick HfO2 devices provided here is to investigate the switchability of the novel system and to study the effect of changing key parameters such as (i) the electrode material and (ii) the drying temperature during solgel processing on the resistive switching behavior. The results presented in this chapter highlight important structure to performance findings that provide guidance and insights on optimizing the solgel drop-coating of micro-thick memristor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Device synthesis and characterization were performed at Khalifa University.

References

  1. J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)

    Article  Google Scholar 

  2. S.D. Ha, Adaptive oxide electronics: A review. J. Appl. Phys. 110, 071101 (2011)

    Article  Google Scholar 

  3. L. Chua, Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)

    Article  MATH  Google Scholar 

  4. S. Shinde, T. Dongle, Modelling of nanostructured TiO2-based memristors. J. Semiconductors 36, 034001 (2015)

    Article  Google Scholar 

  5. P. Mazumder, S.M. Kang, R. Waser, Memristors: Devices, models, and applications. Proc. IEEE 100, 1911–1919 (2012)

    Article  Google Scholar 

  6. M.G.A. Mohamed, H. Kim, T.W. Cho, New modeling technique for memristor devices to cover deviation from memristive theory, 2014 International Conference on Electronics, Information and Communications (ICEIC) (2014)

    Google Scholar 

  7. F. Puppo, M.A. Doucey, M. Di Ventra, G. De Micheli, S. Carrara, Memristor-based devices for sensing, 2014 Ieee International Symposium on Circuits and Systems (Iscas) (2014), pp. 2257–2260

    Google Scholar 

  8. X. Wang, Y. Chen, Y. Gu, H. Li, Spintronic memristor temperature sensor. IEEE Electron Device Lett. 31, 20–22 (2010)

    Article  Google Scholar 

  9. D. Sacchetto, M.-A. Doucey, G. De Micheli, Y. Leblebici, S. Carrara, New insight on bio-sensing by nano-fabricated memristors. BioNanoScience 1, 1–3 (2011)

    Article  Google Scholar 

  10. N.S.M. Hadis, A.A. Manaf, S.H. Herman, Trends of deposition and patterning techniques of TiO2 for memristor based bio-sensing applications. Microsyst. Technol. 19, 1889–1896 (2013)

    Article  Google Scholar 

  11. N.S.M. Hadis, A.A. Manaf, S.H. Herman, N.S.M. Hadis, S.H. Ngalim, R-OFF/RON ratio of nano-well fluidic memristor sensor towards hydroxide based liquid detection, 2015 IEEE 15th International Conference on Nanotechnology (IEEE-Nano) (2015), pp. 1078–1081

    Google Scholar 

  12. N.S.M. Hadis, A.A. Manaf, S.H. Herman, Comparison on TiO2 thin film deposition method for fluidic based glucose memristor sensor, in 2015 IEEE International Circuits and Systems Symposium (ICSyS) (2015), pp. 36–39

    Google Scholar 

  13. E. Chen, J. Thornton, C. Mulchi Jr., Mapping circular current for a single brain cancer cell’s spatial-temporal orientations based on a memristor/memcapacitor. Sens. Transducers 183, 72 (2014)

    Google Scholar 

  14. I. Tzouvadaki, C. Parrozzani, A. Gallotta, G. De Micheli, S. Carrara, Memristive biosensors for PSA-IgM detection. BioNanoScience 5, 189–195 (2015)

    Article  Google Scholar 

  15. I. Tzouvadaki, N. Madaboosi, R. Soares, V. Chu, J. Conde, G. De Micheli et al., Bio-functionalization study of Memristive-Biosensors for early detection of prostate cancer, in Ph.D. Research in Microelectronics and Electronics (PRIME), 2015 11th Conference on (2015), pp. 17–20

    Google Scholar 

  16. S. Carrara, D. Sacchetto, M.-A. Doucey, C. Baj-Rossi, G. De Micheli, Y. Leblebici, Memristive-biosensors: a new detection method by using nanofabricated memristors. Sens. Actuators B: Chem. 171, 449–457 (2012)

    Article  Google Scholar 

  17. E. Gale, R. Mayne, A. Adamatzky, B. de Lacy Costello, Drop-coated titanium dioxide memristors. Mater. Chem. Phys. 143, 524–529 (2014)

    Google Scholar 

  18. L. Chen, Y.-W. Dai, Q.-Q. Sun, J.-J. Guo, P. Zhou, D.W. Zhang, Al2O3/HfO2 functional stack films based resistive switching memories with controlled SET and RESET voltages. Solid State Ionics 273, 66–69 (2015)

    Article  Google Scholar 

  19. M. Yin, P. Zhou, H. Lv, T. Tang, B. Chen, Y. Lin et al., Enhancement of endurance for Cu x O based RRAM cell, in Solid-State and Integrated-Circuit Technology, 2008. ICSICT 2008. 9th International Conference on (2008), pp. 917–920

    Google Scholar 

  20. X. Wang, G. Wu, B. Zhou, J. Shen, Optical constants of crystallized TiO2 coatings prepared by sol-gel process. Materials 6, 2819–2830 (2013)

    Article  Google Scholar 

  21. B. Choi, D. Jeong, S. Kim, C. Rohde, S. Choi, J. Oh et al., Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 033715 (2005)

    Article  Google Scholar 

  22. J. Nowotny, M. Radecka, M. Rekas, Semiconducting properties of undoped TiO2. J. Phys. Chem. Solids. 58, 927–937 (1997)

    Google Scholar 

  23. T. Bak, J. Nowotny, M. Rekas, C. Sorrell, Defect chemistry and semiconducting properties of titanium dioxide: I. Intrinsic electronic equilibrium☆. J. Phys. Chem. Solids 64, 1043–1056 (2003)

    Article  Google Scholar 

  24. Z. Zhang, H. Li, L. Shi, Correlation and ordering of defects in the formation of conducting nanofilaments. J. Phys. D Appl. Phys. 49, 125303 (2016)

    Article  Google Scholar 

  25. H.Y. Jeong, J.Y. Lee, S.-Y. Choi, Direct observation of microscopic change induced by oxygen vacancy drift in amorphous TiO2 thin films. Appl. Phys. Lett. 97(4), 042109 (2010)

    Google Scholar 

  26. M. Alam, D. Cameron, Preparation and characterization of TiO2 thin films by sol-gel method. J. Sol-Gel. Sci. Technol. 25, 137–145 (2002)

    Article  Google Scholar 

  27. M.W. Chase, NIST-JANAF Themochemical Tables (vol. Monograph 9, 4th edn). J. Phys. Chem. Ref. Data, pp. 159, 1020, 1761 (1998)

    Google Scholar 

  28. H.Y. Jeong, J.Y. Lee, S.-Y. Choi, J.W. Kim, Microscopic origin of bipolar resistive switching of nanoscale titanium oxide thin films. Appl. Phys. Lett. 95, 162108 (2009)

    Article  Google Scholar 

  29. H.Y. Jeong, J.Y. Lee, M.K. Ryu, S.Y. Choi, Bipolar resistive switching in amorphous titanium oxide thin film. Phys. Status Solidi (RRL)-Rapid Res. Lett. 4, 28–30 (2010)

    Google Scholar 

  30. H. WM., CRC Handbook of Chemistry and Physics, 95th edn. (CRC press, Florida, 2013) p. 124

    Google Scholar 

  31. E. Casassas, R. Tauler, Spectrophotometric study of complex formation in copper (II) mono-, di-, and tri-ethanolamine systems. J. Chem. Soc. Dalton Trans., pp. 569–573 (1989)

    Google Scholar 

  32. H.H. Strehblow, H.D. Speckmann, Corrosion and layer formation of passive copper in alkaline solutions. Mater. Corros. 35, 512–519 (1984)

    Article  Google Scholar 

  33. V. Kumar, S. Masudy-Panah, C. Tan, T. Wong, D. Chi, G. Dalapati, Copper oxide based low cost thin film solar cells, in Nanoelectronics Conference (INEC), 2013 IEEE 5th International (2013), pp. 443–445

    Google Scholar 

  34. S. Valencia, J.M. Marín, G. Restrepo, Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment. Open Mater. Sci. J. 4, 9–14 (2010)

    Google Scholar 

  35. S.J. Moniz, J. Tang, Charge transfer and photocatalytic activity in CuO/TiO2 nanoparticle heterojunctions synthesised through a rapid, one-pot, microwave solvothermal route. ChemCatChem 7, 1659–1667 (2015)

    Article  Google Scholar 

  36. Y. Wan, X. Wang, H. Sun, Y. Li, K. Zhang, Y. Wu, Corrosion behavior of copper at elevated temperature. Int. J. Electrochem. Sci. 7, 7902–7914 (2012)

    Google Scholar 

  37. W. Guan, M. Liu, S. Long, Q. Liu, W. Wang, On the resistive switching mechanisms of Cu/ZrO2: Cu/Pt. Appl. Phys. Lett. 93, 223506 (2008)

    Article  Google Scholar 

  38. Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012)

    Article  Google Scholar 

  39. S. Maikap, S. Rahaman, Bipolar resistive switching memory characteristics using Al/Cu/GeOx/W memristor. ECS Trans. 45, 257–261 (2012)

    Article  Google Scholar 

  40. H. Abunahla, M.A. Jaoude, C.J. O’Kelly, B. Mohammad, Sol-gel/drop-coated micro-thick TiO2 memristors for γ-ray sensing. Mater. Chem. Phys. 184, 72–81 (2016)

    Article  Google Scholar 

  41. G. Sassine, S. La Barbera, N. Najjari, M. Minvielle, C. Dubourdieu, F. Alibart, Interfacial versus filamentary resistive switching in TiO2 and HfO2 devices. J. Vac. Sci. Technol., B 34, 012202 (2016)

    Article  Google Scholar 

  42. H. Abunahla, M.A. Jaoude, I.A. Omar, B. Mohammad, M. Al-Qutayri, Resistive switching in sol-gel derived microscale memristors. In Circuits and Systems (MWSCAS), 2016 IEEE 59th International Midwest Symposium on , (2016), pp. 1–4‏

    Google Scholar 

  43. N. Gergel-Hackett, B. Hamadani, B. Dunlap, J. Suehle, C. Richter, C. Hacker et al., A flexible solution-processed memristor. Electron Device Lett. IEEE 30, 706–708 (2009)

    Article  Google Scholar 

  44. E. Gale, D. Pearson, S. Kitson, A. Adamatzky, B. de Lacy Costello, The effect of changing electrode metal on solution-processed flexible titanium dioxide memristors. Mater. Chem. Phys. 162, 20–30 (2015)

    Google Scholar 

  45. Y. Zhang, H. Wu, Y. Bai, A. Chen, Z. Yu, J. Zhang et al., Study of conduction and switching mechanisms in Al/AlOx/WOx/W resistive switching memory for multilevel applications. Appl. Phys. Lett. 102, 233502 (2013)

    Article  Google Scholar 

  46. S. Kim, H.Y. Jeong, S.K. Kim, S.-Y. Choi, K.J. Lee, Flexible memristive memory array on plastic substrates. Nano Lett. 11, 5438–5442 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba Abunahla .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Abunahla, H., Mohammad, B. (2018). Synthesis and Characterization of Micro-Thick TiO2 and HfO2 Memristors. In: Memristor Technology: Synthesis and Modeling for Sensing and Security Applications. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-65699-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65699-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65698-4

  • Online ISBN: 978-3-319-65699-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics