Skip to main content

A Literature Survey of Information Systems Facilitating the Identification of Industrial Symbiosis

  • Conference paper
  • First Online:

Part of the book series: Progress in IS ((PROIS))

Abstract

Industrial Symbiosis (IS) is an emerging business tool that is used by practitioners to engage cooperation among industries to reuse waste streams. The key to reveal IS opportunities for organizations is both connecting the supply and demand of various industries and providing technical knowledge on the IS implementation. This process is increasingly supported by information systems which act as a facilitator of communication and distributor of knowledge. However, we lack understanding of a describing role of each type of information system within the process of IS identification. IS literature could benefit from a clear overview of (i) the characteristics of these different information systems, (ii) the role of support these systems provide, and (iii) the technologies used to enable such identification. This paper analyzes the current state of literature that addresses information systems that facilitate IS identification and studies these systems using these three pillars. Our study contributes by providing a classification framework of information systems that facilitate industrial symbiosis identification and reveals three research directions to progress IS identification tools, namely (i) software product and service development (ii) data integration, and (iii) adoption of intelligent learning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aid G, Brandt N, Lysenkova M, Smedberg N (2015) Looplocal a heuristic visualization tool to support the strategic facilitation of industrial symbiosis. J Clean Prod 98:328–335

    Article  Google Scholar 

  • Alvarez R, Ruiz-Puente C (2016) Development of the tool symbiosys to support the transition towards a circular economy based on industrial symbiosis strategies. Waste Biomass Valorization, pp 1–10

    Google Scholar 

  • Baas L, Hjelm O (2015) Support your future today: enhancing sustainable transitions by experimenting at academic conferences. J Clean Prod 98:1–7

    Article  Google Scholar 

  • Boons F, Chertow M, Park J, Spekkink W, Shi H (2016) Industrial symbiosis dynamics and the problem of equivalence: proposal for a comparative framework. J Ind Ecol

    Google Scholar 

  • Cabrera A, Cabrera EF (2002) Knowledge-sharing dilemmas. Organ Stud 23(5):687–710

    Article  Google Scholar 

  • Cecelja F, Raafat T, Trokanas N, Innes S, Smith M, Yang A, Zorgios Y, Korkofygas A, Kokossis A (2015) e-Symbiosis: technology-enabled support for industrial symbiosis targeting small and medium enterprises and innovation. J Clean Prod 98:336–352

    Article  Google Scholar 

  • Chen PC, Ma HW (2015) Using an industrial waste account to facilitate national level industrial symbioses by uncovering the waste exchange potential. J Ind Ecol 19(6):950–962

    Article  Google Scholar 

  • Chen Z, Li H, Kong SC, Hong J, Xu Q (2006) E-commerce system simulation for construction and demolition waste exchange. Autom Constr 15(6):706–718

    Article  Google Scholar 

  • Chertow MR (2000) Industrial symbiosis: literature and taxonomy. Annu Rev Energy Env 25(1):313–337

    Article  Google Scholar 

  • Chertow MR (2007) Uncovering industrial symbiosis. J Ind Ecol 11(1):11–30

    Article  Google Scholar 

  • Clayton A, Muirhead J, Reichgelt H (2002) Enabling industrial symbiosis through a web-based waste exchange. Gr Manag Int 40:93–107

    Google Scholar 

  • Cutaia L, Luciano A, Barberio G, Sbaffoni S, Mancuso E, Scagliarino C, La Monica M (2015) The experience of the first industrial symbiosis platform in italy. Environ Eng Manag J 14(7):1521–1533

    Google Scholar 

  • Cutaia L, Morabito R, Barberio G, Mancuso E, Brunori C, Spezzano P, Mione A, Mungiguerra C, Li Rosi O, Cappello F (2014) The project for the implementation of the industrial symbiosis platform in sicily: the progress after the first year of operation. Springer International Publishing, Cham, pp 205–214

    Google Scholar 

  • Davis C, Nikoli I, Dijkema GPJ (2009) Integration of life cycle assessment into agent-based modeling. J Ind Ecol 13(2):306–325

    Article  Google Scholar 

  • Davis C, Nikolic I, Dijkema GP (2010) Industrial ecology 2.0. J Ind Ecol 14(5):707–726

    Article  Google Scholar 

  • Demirkan H, Delen D (2013) Leveraging the capabilities of service-oriented decision support systems: putting analytics and big data in cloud. Decis Support Syst 55(1):412–421

    Article  Google Scholar 

  • Dhanorkar S, Donohue K, Linderman K (2015) Repurposing materials and waste through online exchanges: overcoming the last hurdle. Prod Oper Manage 24(9):1473–1493

    Google Scholar 

  • Dietrich J, Becker F, Nittka T, Wabbels M, Modoran D, Kast G, Williams I, Curran A, den Boer E, Kopacek B, et al (2014) Extending product lifetimes: a reuse network for ict hardware, vol 167, pp 123–135

    Google Scholar 

  • Dou Y, Togawa T, Dong L, Fujii M, Ohnishi S, Tanikawa H, Fujita T (2016) Innovative planning and evaluation system for district heating using waste heat considering spatial configuration: a case in fukushima, Japan. Resour Conserv Recycl

    Google Scholar 

  • Ekstrand MD, Riedl JT, Konstan JA (2011) Collaborative filtering recommender systems. Found Trends Hum Comput Interact 4(2):81–173

    Google Scholar 

  • Elsevier (2017) Scopus document search. https://www.scopus.com/. Accessed 01 Mar 2017

  • Enipedia (2015) Case studies. http://enipedia.tudelft.nl/wiki/Industrial\_Symbiosis\_Data\_Sources\#CASE\_STUDIES. Accessed 16 Feb 2017

  • Environment, Health and Safety (2017) List of U.S. state-specific waste exchanges. http://www.ehso.com/wastexchg.php. Accessed 16 Feb 2017

  • European Commission (05 2000) Commission decision on the european list of waste (com 2000/532/ec). Technical report, European Commission

    Google Scholar 

  • European Environmental Agency (10 2016) More from less material resource efficiency in europe. eea report no 10/2016. Technical report, European Environmental Agency

    Google Scholar 

  • Evans DS, Schmalensee R (2010) Failure to launch: critical mass in platform businesses. Rev of Netw Econ 9(4)

    Google Scholar 

  • Ghali MR, Frayret JM, Robert JM (2016) Green social networking: concept and potential applications to initiate industrial synergies. J Clean Prod 115:23–35

    Article  Google Scholar 

  • Grant GB, Seager TP, Massard G, Nies L (2010) Information and communication technology for industrial symbiosis. J Ind Ecol 14(5):740–753

    Article  Google Scholar 

  • Große J, Matusevicus A, Wohlgemuth V (2016) Prototypische umsetzung einer webanwendung zur beurteilung von stoff- und energieströmen am standort berlin-schöneweide. In: Environmental informatics—stability, continuity, innovation: current trends and future perspectives based on 30 years of history, pp 99–105

    Google Scholar 

  • Hein AM, Jankovic M, Farel R, Sam LI, Yannou B (2015) Modeling industrial symbiosis using design structure matrices. In: 17th international dependency and structure modeling conference, DSM 2015

    Google Scholar 

  • Hickey S, Fitzpatrick C, Maher P, Ospina J, Schischke K, Beigl P, Vidorreta I, Yang M, Williams I (May 2014) A case study of the d4r laptop, vol 167, pp 101–108

    Google Scholar 

  • Horvath G (2016) A framework for an industrial ecological decision support system to foster partnerships between businesses and governments for sustainable development. J Clean Prod 114:214–223

    Article  Google Scholar 

  • ISDATA (2015) The industrial symbiosis data repository. http://isdata.org/. Accessed 31 Jan 2017

  • Jensen PD, Basson L, Hellawell EE, Leach M (2012) habitat suitability index mapping for industrial symbiosis planning. J Ind Ecol 16(1):38–50

    Article  Google Scholar 

  • LinkedIn (2017) Industrial symbiosis. https://www.linkedin.com/groups/1845383. Accessed 02 Mar 2017

  • Lombardi DR, Laybourn P (2012) Redefining industrial symbiosis. J Ind Ecol 16(1):28–37

    Article  Google Scholar 

  • Lombardi D, Laybourn P (2014) National industrial symbiosis programme (nisp): Connecting industry, creating opportunity. In: 2015 ENEA, 2012(2013), p 22

    Google Scholar 

  • Massard G, Erkman S (2007) A regional industrial symbiosis methodology and its implementation in geneva, switzerland. In: 3rd international conference on life cycle management, University of Zurich, Citeseer, Irchel

    Google Scholar 

  • Massard G, Erkman S (2009) A web-gis tool for industrial symbiosis: Preliminary results and perspectives. In: 23rd international conference on informatics and environmental protection

    Google Scholar 

  • Mattila T, Lehtoranta S, Sokka L, Melanen M, Nissinen A (2012) Methodological aspects of applying life cycle assessment to industrial symbioses. J Ind Ecol 16(1):51–60

    Article  Google Scholar 

  • Mirata M (2004) Experiences from early stages of a national industrial symbiosis programme in the uk: determinants and coordination challenges. J Clean Prod 12(810):967–983

    Article  Google Scholar 

  • Nordregio (2016) 50 industrial symbiosis case studies. http://www.nordregio.se/50cases. Accessed 16 Feb 2017

  • Paquin RL, Howard-Grenville J (2012) The evolution of facilitated industrial symbiosis. J Ind Ecol 16(1):83–93

    Article  Google Scholar 

  • Raabe B, Low JSC, Juraschek M, Herrmann C, Tjandra TB, Ng YT, Kurle D, Cerdas F, Lueckenga J, Yeo Z, Tan YS (2017) Collaboration platform for enabling industrial symbiosis: Application of the by-product exchange network model. Procedia CIRP 61:263–268

    Article  Google Scholar 

  • Raafat T, Trokanas N, Cecelja F, Bimi X (2013) An ontological approach towards enabling processing technologies participation in industrial symbiosis. Comput Chem Eng 59:33–46

    Article  Google Scholar 

  • Ruiz M, Romero E, Prez M, Fernndez I (2012) Development and application of a multi-criteria spatial decision support system for planning sustainable industrial areas in northern spain. Autom Constr 22:320–333

    Article  Google Scholar 

  • Sander K, Schilling S, Lskow H, Gonser J, Schwedtje A, Kchen V (11 2008) Review of the european list of waste. Technical report, kopol GmbH and ARGUS GmbH

    Google Scholar 

  • Song B, Yeo Z, Kohls P, Herrmann C (2017) Industrial symbiosis: Exploring big-data approach for waste stream discovery. Procedia CIRP 61:353–358

    Article  Google Scholar 

  • Sterr T, Ott T (2004) The industrial region as a promising unit for eco-industrial development reflections, practical experience and establishment of innovative instruments to support industrial ecology. J Clean Prod 12(810):947–965

    Article  Google Scholar 

  • Togawa T, Fujita T, Dong L, Ohnishi S, Fujii M (2016) Integrating (GIS) databases and (ICT) applications for the design of energy circulation systems. J Clean Prod 114:224–232

    Article  Google Scholar 

  • Trokanas N, Cecelja F, Raafat T (2015) Semantic approach for pre-assessment of environmental indicators in industrial symbiosis. J Clean Prod 96:349–361

    Article  Google Scholar 

  • U.S. EPA (1994) Review of industrial waste exchanges. Technical report, U.S. Environmental Protection Agency

    Google Scholar 

  • van Beers D, Corder G, Bossilkov A, van Berkel R (2007) Regional synergies in the australian minerals industry: Case-studies and enabling tools. Miner Eng 20(9):830–841

    Article  Google Scholar 

  • Veiga LBE, Magrini A (2009) Eco-industrial park development in rio de janeiro, brazil: a tool for sustainable development. J Clean Prod 17(7):653–661

    Article  Google Scholar 

  • Wang S, Noe RA (2010) Knowledge sharing: A review and directions for future research. Hum Resour Manage Rev 20(2):115–131

    Article  Google Scholar 

  • Webster J, Watson RT (2002) Analyzing the past to prepare for the future: writing a literature review. MIS Quarterly 26(2):xiii–xxiii

    Google Scholar 

  • Xu L, Brinkkemper S (2007) Concepts of product software. Eur J Inf Syst 16(5):531–541

    Google Scholar 

  • Yu C, Davis C, Dijkema GP (2014) Understanding the evolution of industrial symbiosis research. J Ind Ecol 18(2):280–293

    Article  Google Scholar 

  • Zhang C, Romagnoli A, Zhou L, Kraft M (2017) Knowledge management of eco-industrial park for efficient energy utilization through ontology-based approach. Appl Energy

    Google Scholar 

Download references

Acknowledgements

This research is funded by European Union’s Horizon 2020 program under grant agreement No. 680843.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido van Capelleveen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

van Capelleveen, G., Amrit, C., Yazan, D.M. (2018). A Literature Survey of Information Systems Facilitating the Identification of Industrial Symbiosis. In: Otjacques, B., Hitzelberger, P., Naumann, S., Wohlgemuth, V. (eds) From Science to Society. Progress in IS. Springer, Cham. https://doi.org/10.1007/978-3-319-65687-8_14

Download citation

Publish with us

Policies and ethics