Bone’s Intrinsic Traits: Inferring Species, Sex, and Age

  • Diane Gifford-Gonzalez


Chapter 6 reviews the bases for species identification, size estimation, and sex and age determination from bones. Age determinations based on mammal teeth will be discussed in Chap. 7. How a vertebrate moves in the landscape and how it obtains and processes its food are reflected in its osteology. An individual’s skeletal traits are in turn shaped by its species’ genetic inheritance, ecological setting, breeding system, and life history. Such distinctive physical characteristics allow taxonomic identification and sex determination. Vertebrates have limited lifespans, and their patterns of growth may produce characteristic markers on skeletal elements, and traits can often be used to estimate an animal’s age at death, using contemporary studies of a species’ growth and development as an analogical reference point. As Chap. 6 reviews these topics, readers are directed toward useful reference materials and means of learning distinctive traits.


Species identification Sex determination Age determination Osteometrics zooMS Histology 


  1. Acsádi, G., & Nemeskéri, J. (1970). History of human lifespan and mortality. Budapest: Académiai Kiadó.Google Scholar
  2. Adams, B. J., & Crabtree, P. J. (2008). Comparative skeletal anatomy: A photographic atlas for medical examiners, coroners, forensic anthropologists, and archaeologists. Totowa: Humana Press.CrossRefGoogle Scholar
  3. Adams, B. J., & Crabtree, P. J. (2012). Comparative osteology: A laboratory and field guide of common North American animals. Waltham: Academic Press.Google Scholar
  4. Ashby, S. P., Coutu, A. N., & Sindbæk, S. M. (2015). Urban networks and Arctic outlands: Craft specialists and reindeer antler in Viking towns. European Journal of Archaeology, 18(4), 679–704.CrossRefGoogle Scholar
  5. Barnosky, A. D. (Ed.). (2004). Biodiversity response to climate change in the middle Pleistocene: The Porcupine Cave fauna from Colorado. Berkeley: University of California Press.Google Scholar
  6. Barone, R. (1976). Anatomie Comparée des Mammifères Domestiques (2nd ed.). Paris: Vigot.Google Scholar
  7. Beisaw, A. M. (2013). Identifying and interpreting animal bones: A manual. College Station: Texas A&M University Press.Google Scholar
  8. Boessneck, J. (1969). Osteological differences between sheep (Ovis aries Linné) and goat (Capra hircus Linné). In D. R. Brothwell & E. S. Higgs (Eds.), Science in archaeology (pp. 331–358). London: Thames & Hudson.Google Scholar
  9. Bovy, K. M. (2011). Comments on “identification, classification and zooarchaeology.” Ethnobiology Letters, 2, 30.Google Scholar
  10. Broughton, J. M. (1997). Widening diet breadth, declining foraging efficiency, and prehistoric harvest pressure: Ichthyofaunal evidence from the Emeryville Shellmound, California. Antiquity, 71(274), 845–862.CrossRefGoogle Scholar
  11. Brown, C. L., & Gustafson, C. E. (1979). A key to postcranial skeletal remains of cattle/bison, elk, and horse (Vol. 57, Laboratory of Anthropology Reports of Investigations, Washington State University). Pullman: Washington State University.Google Scholar
  12. Brown, J. H., & Lasiewski, R. C. (1972). Metabolism of weasels: The cost of being long and thin. Ecology, 53(5), 939–943.CrossRefGoogle Scholar
  13. Buckley, M., Whitcher Kansa, S., Howard, S., Campbell, S., Thomas-Oates, J., & Collins, M. (2010). Distinguishing between archaeological sheep and goat bones using a single collagen peptide. Journal of Archaeological Science, 37(1), 13–20.CrossRefGoogle Scholar
  14. Buikstra, J. E. (1981). Mortuary practices, paleodemography, and paleopathology: A case study from the Koster site (Illinois). In R. Chapman, I. Kinnes, & K. Randsborg (Eds.), The archeology of death (pp. 123–132). Cambridge: Cambridge University Press.Google Scholar
  15. Butterfield, R. M., & May, N. D. S. (1966). Muscles of the ox. Brisbane: University of Queensland Press.Google Scholar
  16. Casteel, R. W. (1976). Fish remains in archaeology and paleoenvironmental studies. London: Academic Press.Google Scholar
  17. Carden, R. F., & Hayden, T. J. (2015). 15. Epiphyseal fusion in the postcranial sleton as an indicator of age at death of European fallow deer (Dama dama dama, Linnaeus, 1758). In D. Ruscillo (Ed.), Recent advances in ageing and sexing animal bones (pp. 227–236). Oxford: Oxbow Books.Google Scholar
  18. Chaplin, R. E. (1971). The study of animal bones from archaeological sites. New York: Seminar Press.Google Scholar
  19. Dammers, K. (2006). Using osteohistology for ageing and sexing. In D. Ruscillo (Ed.), Recent advances in ageing and sexing animal bones (pp. 9–39, Proceedings of the 9th Conference of the International Council of Archaeozoology, Durham, August, 2002). Oxford: Oxbow Books.Google Scholar
  20. Davis, S. J. M. (1987). The archaeology of animals. New Haven: Yale University Press.Google Scholar
  21. Davis, S. J. M. (2000). The effect of castration and age on the development of the Shetland sheep skeleton and a metric comparison between bones of males, females and castrates. Journal of Archaeological Science, 27(5), 373–390.CrossRefGoogle Scholar
  22. Dragoo, J. W., & Honeycutt, R. L. (1997). Systematics of mustelid-like carnivores. Journal of Mammalogy, 78(2), 426–443.CrossRefGoogle Scholar
  23. Driver, J. C. (1982). Medullary bone as an indicator of sex in bird remains from archaeological sites. In B. Wilson, C. Grigson, & S. Payne (Eds.), Ageing and sexing animal bones from archaeological sites (Vol. 109, pp. 251–254). Oxford: British Archaeological Reports.Google Scholar
  24. Driver, J. C. (2011). Identification, classification and zooarchaeology. Ethnobiology Letters, 2, 19–39.CrossRefGoogle Scholar
  25. Duerst, J. U. (1926). Vergleichende Untersuchungsmethoden am Skelett bei Säugern. In E. Abderhalden (Ed.), Handbuch der biologischen Arbeitsmethoden (Vol. 7, pp. 125–530). Berlin-Wien: Urban & Schwarzenberg.Google Scholar
  26. Erlinge, S. (1979). Adaptive significance of sexual dimorphism in weasels. Oikos, 33(2), 233–245.CrossRefGoogle Scholar
  27. Etnier, M. A. (2002). The effects of human hunting on northern fur seal (Callorhinus ursinus) migration and breeding distributions in the Late Holocene. Doctoral dissertation, University of Washington, Seattle.Google Scholar
  28. Flynn, J. J., Finarelli, J. A., Zehr, S., Hsu, J., & Nedbal, M. A. (2005). Molecular phylogeny of the Carnivora (Mammalia): Assessing the impact of increased sampling on resolving enigmatic relationships. Systematic Biology, 54(2), 317–337.CrossRefGoogle Scholar
  29. France, D. L. (2009). Human and nonhuman bone identification: A color atlas. Boca Raton: CRC Press.Google Scholar
  30. Getty, R. (1975). Sisson and Grossman’s the anatomy of the domestic animals (Vol. 2, 5th ed.). Philadelphia: W. B. Saunders Company.Google Scholar
  31. Gifford, D. P., Isaac, G. L., & Nelson, C. M. (1980). Evidence for predation and pastoralism at prolonged drift, a pastoral Neolithic site in Kenya. Azania, 15, 57–108.CrossRefGoogle Scholar
  32. Gifford-Gonzalez, D. (1998). Early pastoralists in East Africa: Ecological and social dimensions. Journal of Anthropological Archaeology, 17(2), 166–200.CrossRefGoogle Scholar
  33. Gilbert, B. M. (1990). Mammalian Osteology. Columbia, MO: Missouri Archaeological Society.Google Scholar
  34. Grayson, D. K. (1988). Danger Cave, Last Supper Cave, and Hanging Rock Shelter: The faunas (American Museum of Natural History Anthropological Papers, Vol. 66(1)). New York: American Museum of Natural History.Google Scholar
  35. Greenfield, H. J. (2006). Sexing fragmentary ungulate acetabulae. In D. Ruscillo (Ed.), Recent advances in ageing and sexing animal bones (pp. 68–86). Oxford: Oxbow Books.Google Scholar
  36. Haynes, G. (1987). Proboscidean die-offs and die-outs: Age profiles in fossil collections. Journal of Archaeological Science, 14(6), 659–668.CrossRefGoogle Scholar
  37. Haynes, G. (1991). Mammoths, mastodons, and elephants. Biology, behavior, and the fossil record. Cambridge: Cambridge University Press.Google Scholar
  38. Higham, C., & Message, M. (1969). An assessment of a prehistoric technique of bovine husbandry. In D. R. Brothwell & E. S. Higgs (Eds.), Science in archaeology (pp. 315–330). London: Thames & Hudson.Google Scholar
  39. Hildebrand, M. (1955). Skeletal differences between deer, sheep. and goats. California Fish and Game, 41(4), 327–346.Google Scholar
  40. Klein, R. G. (1986). Carnivore size and Quaternary climatic change in southern Africa. Quaternary Research, 26(1), 153–170.Google Scholar
  41. Klein, R. G. (1991). Size variation in the cape dune molerat (Bathyrgus suillus) and late Quaternary climatic change in the southwestern Cape Province, South Africa. Quaternary Research, 36(3), 243–256.Google Scholar
  42. Klein, R. G., & Cruz-Uribe, K. (1983). Stone age population numbers and average tortoise size at Byneskranskop Cave 1 and Die Kelders cave 1, southern Cape Province, South Africa. South African Archaeological Bulletin, 38(137), 26–30.Google Scholar
  43. Klein, R. G., & Cruz-Uribe, K. (1996). The identification of Equus skulls to species, with particular reference to the craniometric and systematic affinities of the extinct south African quagga. In K. M. Stewart & K. L. Seymour (Eds.), Palaeoecology and palaeoenvironments of late Cenozoic mammals: Tributes to the career of C. S. (Rufus) Churcher (pp. 598–629). Toronto: University of Toronto Press.Google Scholar
  44. König, H. E., & Liebich, H.-G. (2007). Veterinary anatomy of domestic mammals: Textbook and color atlas. Stuttgart: Schattauer.Google Scholar
  45. Larson, G., Albarella, U., Dobney, K., Rowley-Conwy, K., Schibler, J., Tresset, A., et al. (2007). Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proceedings of the National Academy of Science, 104, 15276–15281.CrossRefGoogle Scholar
  46. Lawrence, B. (1951). Part II: Post-cranial skeletal characters of deer, pronghorn, and sheep-goat with notes on Bos and Bison. Papers of the Peabody Museum of Archaeology and Ethnology, Harvard University, 35(3), 3–43.Google Scholar
  47. Lentacker, A., & Van Neer, W. (1996). Bird remains from two sites on the Red Sea coast and some observations on medullary bone. International Journal of Osteoarchaeology, 6(5), 488–496.CrossRefGoogle Scholar
  48. Lewall, E. F., & Cowan, I. M. (1963). Age determination in black-tail deer by degree of ossification of the epiphyseal plate in the long bones. Canadian Journal of Zoology, 41(4), 629–636.CrossRefGoogle Scholar
  49. Lyman, R. L. (2005). Zooarchaeology. In H. D. Maschner & C. Chippindale (Eds.), Handbook of archaeological methods (Vol. 1, pp. 835–870). Lanham, MD: Rowman Altamira.Google Scholar
  50. Lyman, R. L. (2007). Prehistoric mink (Mustela vison) trapping on the Northwest Coast. Journal of Field Archaeology, 32(1), 91–95.Google Scholar
  51. Lyman, R. L. (2010). Paleozoology’s dependence on natural history collections. Journal of Ethnobiology, 30(1), 126–136.CrossRefGoogle Scholar
  52. Lyman, R. L. (2011). Comments on “Identification, classification and zooarchaeology.” Ethnobiology Letters, 2, 33–34.Google Scholar
  53. Marshall, F. B. (1990). Cattle herds and caprine flocks. In P. T. Robertshaw (Ed.), Early pastoralists of south-western Kenya (pp. 205–260). Nairobi: British Institute in Eastern Africa.Google Scholar
  54. Martin, L. G., Grossman, M. S., Connor, T. B., Levitsky, L. L., Clark, J. W., & Camitta, F. D. (1979). Effect of androgen on growth hormone secretion and growth in boys with short stature. Acta Endocrinologica, 91(2), 201–212.Google Scholar
  55. Meadow, R. H. (1999). The use of size index scaling techniques for research on archaeozoological collections from the Middle East. In J. Schibier (Ed.), Historia animalium ex ossibus: Beitrage zür Palaoanatomie, Archäologie, Ägyptologie, Ethnologie, und Geschichte der Tiermedizin (pp. 285–300). Rahden: Verlag Marie Leidorf.Google Scholar
  56. Mitchell, C. J., & Smith, P. W. (1991). Reliability of techniques for determining age in southern white-tailed deer. Journal of the Tennesse Academy of Science, 66(3), 117–120.Google Scholar
  57. Morbeck, M. E., Galloway, A., & Zihlman, A. L. (1997). The evolving female: A life history perspective. Princeton: Princeton University press.Google Scholar
  58. Olsen, S. J. (1960). Post-cranial characters of Bison and Bos. Papers of the Peabody Museum of Archaeology and Ethnology, Harvard University, 35(4), 2–60.Google Scholar
  59. Olsen, S. J. (1968). Fish, amphibian, and reptile remains from archaeological sites: Part I – Southeastern and Southwestern United States. Papers of the Peabody Museum of Archaeology and Ethnology, Harvard University, 56(2).Google Scholar
  60. Olsen, S. J. (1972a). Osteology for the archaeologist: North American birds. Papers of the Peabody Museum of Archaeology and Ethnology, Harvard University, 56(4).Google Scholar
  61. Olsen, S. J. (1972b). Osteology for the archaeologist: The American mastodon and the woolly mammoth. Papers of the Peabody Museum of Archaeology and Ethnology, Harvard University, 56(3).Google Scholar
  62. Olsen, S. J. (1973). Mammal remains from archaeological sites: Part I – Southeastern and Southwestern United States. Papers of the Peabody Museum of Archaeology and Ethnology, Harvard University, 56(1).Google Scholar
  63. Pacheco Torres, V. R., Enciso, A. A., & Porras, E. G. (1986). The osteology of South American camelids (trans: Sandefur, E., Vol. 30, Archaeological Research Tools). Los Angeles: Institute of Archaeology, University of California, Los Angeles.Google Scholar
  64. Payne, S. (1969). A metrical distinction between sheep and goat metacarpals. In G. W. Dimbleby & P. J. Ucko (Eds.), Domestication and exploitation of plants and animals (pp. 295–305). Chicago: Aldine Publishing.Google Scholar
  65. Payne, S. (1973). Kill-off patterns in sheep and goats: The mandibles from Aşvan kale. Anatolian Studies, 23, 281–303.CrossRefGoogle Scholar
  66. Perrier, E. (1893–1932). Traité de Zoologie. Les Mammifères (Vol. X). Paris: Masson.Google Scholar
  67. Peters, J. (1986a). Osteomorphology and osteometry of the appendicular skeleton of African Buffalo,Syncerus caffer (Spaarman, 1779) and cattle,Bos primigenius f.taurus (Bojanus, 1827) (Vol. 1, Occasional Papers, Laboratory of Paleontology). Ghent: Rijksuniversiteit Gent.Google Scholar
  68. Peters, J. (1986b). Osteomorphology and osteometry of the appendicular skeleton of Grant's Gazelle,Gazella granti (Brooke, 1872), Bohor Reedbuck,Redunca redunca (Pallas, 1767), and Bushbuck Tragelaphus scriptus (Pallas, 1766) (Vol. 2, Occasional Papers, Laboratory of Paleontology). Ghent: Rijksuniversiteit Gent.Google Scholar
  69. Peters, J., & Brink, J. S. (1992). Comparative postcranial osteomorphology and osteometry of springbok, Antidorcas marsupialis (Zimmerman, 1780) and Grey rhebok, Pelea capreolus (Forster, 1790) (Mammalia: Bovidae). Navorsinge van die Nasionale Museum: Researches of the National Museum, 8(4), 189–201.Google Scholar
  70. Pictet, F. J. (1980 (1853–1857)). Traité élémentaire de paléontologie (2nd ed.). New York: Arno Press.Google Scholar
  71. Piveteau, J. (1952–69). Traite de paleontologie. Paris: Masson.Google Scholar
  72. Plummer, T. W., & Bishop, L. C. (1994). Hominid paleoecology at Olduvai Gorge, Tanzania as indicated by antelope remains. Journal of Human Evolution, 27(1–3), 47–75.CrossRefGoogle Scholar
  73. Prummel, W., & Frisch, H.-J. (1986). A guide for the distinction of species, sex, and body side in bones of sheep and goat. Journal of Archaeological Science, 13(6), 567–577.CrossRefGoogle Scholar
  74. Purdue, J. R. (1983). Epiphyseal closure in white-tailed deer. Journal of Wildlife Management, 47(4), 1207–1213.CrossRefGoogle Scholar
  75. Redding, R. W. (1981). Decision making in subsistence herding of sheep and goats in the Middle East. Doctoral Dissertation, University of Michigan, Ann Arbor.Google Scholar
  76. Reitz, E. J., & Wing, E. S. (2008). Zooarchaeology (2nd ed., Cambridge Manuals in Archaeology). Cambridge: Cambridge University Press.Google Scholar
  77. Richter, K. K., Wilson, J., Jones, A. K. G., Buckley, M., van Doorn, N., & Collins, M. J. (2011). Fish ’n chips: ZooMS peptide mass fingerprinting in a 96 well plate format to identify fish bone fragments. Journal of Archaeological Science, 38(7), 1502–1510.CrossRefGoogle Scholar
  78. Robinette, W. L., Jones, D. A., Rogers, G., & Gashwiler, J. S. (1957). Notes on tooth development and wear for Rocky Mountain deer. Journal of Wildlife Management, 21(2), 134–153.Google Scholar
  79. Rogol, A. D. (1996). Growth at puberty: The androgen connection. In S. Bhasin, H. L. Gabelnick, J. M. Spieler, R. S. Swerdloff, C. Wang, & C. Kelly (Eds.), Pharmacology, biology, and clinical applications of androgens (pp. 301–308). New York: Wiley-Liss.Google Scholar
  80. Rossel, S., Marshall, F., Peters, J., Pilgram, T., Adams, M. D., & O’Connor, D. (2008). Domestication of the donkey: Timing, processes, and indicators. Proceedings of the National Academy of Science, 105(10), 3715–3720.CrossRefGoogle Scholar
  81. Rowley-Conwy, P. (1995). Wild or domestic? On the evidence for the earliest domestic cattle and pigs in south Scandinavia and Iberia. International Journal of Osteoarchaeology, 5(2), 115–126.CrossRefGoogle Scholar
  82. Ruscillo, D. (Ed.). (2006). Recent advances in ageing and sexing animal bones. Oxford: Oxbow Books.Google Scholar
  83. Schmid, E. (1972). Atlas of animal bones: For prehistorians, archaeologists and quaternary geologists. Amsterdam: Elsevier Publishing Company.Google Scholar
  84. Silver, I. A. (1963). The ageing of domestic animals. In D. R. Brothwell & E. Higgs (Eds.), Science in archaeology: A comprehensive survey of the progress and research (pp. 283–302). New York: Praeger.Google Scholar
  85. Sisson, S., & Grossman, J. (1975). The anatomy of the domestic animals (5th ed.). Philadelphia: Saunders.Google Scholar
  86. Smith, S. M. (1982). Raptor “reverse” dimorphism revisited: A new hypothesis. Oikos, 39(1), 118–122.CrossRefGoogle Scholar
  87. Stiner, M. C., Munro, N. D., & Surovell, T. A. (2000). The tortoise and the hare: small-game use, the Broad-Spectrum Revolution, and paleolithic demography. Current Anthropology, 41(1), 39–79.Google Scholar
  88. Storå, J. (2001). Reading bones: Stone age hunters and seals in the Baltic (Stockholm studies in archaeology, Vol. 21). Stockholm: Stockholm University.Google Scholar
  89. Teldahl, Y., Svensson, E. M., Götherström, A., & Storå, J. (2012). Osteometric and molecular sexing of cattle metapodia. Journal of Archaeological Science, 39(1), 121–127.CrossRefGoogle Scholar
  90. Thiede, B., Höhenwarter, W., Krah, A., Mattow, J., Schmid, M., Schmidt, F., et al. (2005). Peptide mass fingerprinting. Methods, 35(3), 237–247.CrossRefGoogle Scholar
  91. Tollit, D. J., Heaslip, S. G., Zeppelin, T. K., Joy, R., Call, K. A., & Trites, A. W. (2004). A method to improve size estimates of walleye pollock (Theragra chalcogramma) Atka mackerel (Pleurogrammus monopterygius) consumed by pinnipeds: Digestion correction factors applied to bones and otoliths recovered in scats. Fishery Bulletin, 102(3), 498–508.Google Scholar
  92. von den Driesch, A. (1976). A guide to the measurement of animal bones from archaeological sites. Peabody Museum of Archaeology and Ethnology Bulletin, 1. Cambridge, MA: Harvard University, Peabody Museum.Google Scholar
  93. Walker, R. (1985). A guide to post-cranial bones of East African animals: Mrs. Walker’s bone book. Norwich: Hylochoerus Press.Google Scholar
  94. Walker, D. N. (1987). Sequence of epiphyseal fusion in the Rocky Mountain bighorn sheep. The Great Basin Naturalist, 47(1), 7–12.Google Scholar
  95. Walker, P. L., Johnson, J. R., & Lambert, P. M. (1988). Age and sex biases in the preservation of human skeletal remains. American Journal of Physical Anthropology, 76(2), 183–188.CrossRefGoogle Scholar
  96. Watson, M. J. (1969). The effects of castration on the growth and meat quality of grazing cattle. Australian Journal of Experimental Agriculture and Animal Husbandry, 9(37), 164–171.CrossRefGoogle Scholar
  97. Weinstock, J. (2009). Epiphyseal fusion in brown bears: A population study of grizzlies (Ursus arctos horribilis) from Montana and Wyoming. International Journal of Osteoarchaeology, 19(3), 416–423.CrossRefGoogle Scholar
  98. Wellman, H. P., Rick, T. C., Rodrigues, A. T., & Yang, D. Y. (2016). Evaluating ancient whale exploitation on the Northern Oregon Coast through ancient DNA and zooarchaeological analysis. The Journal of Island and Coastal Archaeology, 12(2), 255–275.Google Scholar
  99. Wilson, B., Grigson, C., & Payne, S. (Eds.). (1982). Ageing and sexing animal bones from archaeological sites (Vol. 109). Oxford: British Archaeological Reports, British Series.Google Scholar
  100. Yang, D. Y., Woiderski, J. R., & Driver, J. C. (2005). DNA analysis of archaeological rabbit remains from the American Southwest. Journal of Archaeological Science, 32(4), 567–578.Google Scholar
  101. Zeder, M. A. (1991). Feeding cities: Specialized animal economy in the Ancient Near East. Washington, DC: Smithsonian Institution Press.Google Scholar
  102. Zeder, M. A. (2001). A metrical analysis of a collection of modern goats (Capra hircus aegagrus and C. h. hircus) from Iran and Iraq: Implications for the study of caprine domestication. Journal of Archaeological Science, 28(1), 61–79.Google Scholar
  103. Zeder, M. A., & Lapham, H. A. (2010). Assessing the reliability of criteria used to identify postcranial bones in sheep, Ovis, and goats, Capra. Journal of Archaeological Science, 37(11), 2887–2905.CrossRefGoogle Scholar
  104. Zeder, M. A., & Pilaar, S. E. (2010). Assessing the reliability of criteria used to identify mandibles and mandibular teeth in sheep, Ovis, and goats, Capra. Journal of Archaeological Science, 37(2), 225–242.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Diane Gifford-Gonzalez
    • 1
  1. 1.Department of AnthropologyUniversity of CaliforniaSanta CruzUSA

Personalised recommendations