New Ecological Directions: Isotopes, Genetics, Historical Ecology, Conservation

  • Diane Gifford-Gonzalez


Chapter 23 reviews a selection of ecologically related areas in which zooarchaeologists have increasingly participated. Zooarchaeological analysis is enriched, rather than supplanted, by stable isotopic analysis of human and animal bones and teeth and analyses of modern and ancient animal DNA. This chapter outlines commonly used stable isotopes and their elucidation of migration, biogeographic change, and ecological relations in archaeological cases. Genomics has clarified domestication of various species while creating more complex narratives of human and animal interaction and movement, as examples in this chapter attest. While as yet on a more modest scale, analysis of aDNA from archaeofaunas offers a significant contribution to wild animal population history. Conservation biologists have recognized that archaeofaunas can testify to species biogeography and regional habitats for long before historic documentation. This chapter outlines complexities of defining baselines for habitat restoration and of communicating with another research community, conservation biologists. As examples here show, aspiring applied zooarchaeologists need good communication skills to discover what conservation biologists want to know, within the “political ecology” of their own work lives, and to translate esoteric zooarchaeological knowledge into information useful to them.


Stable isotope DNA Archaeogenomics Conservation Applied zooarchaeology Historical ecology 


  1. Ambrose, S. H., & DeNiro, M. J. (1986). Reconstruction of African human diet using bone collagen carbon and nitrogen isotope ratios. Nature, 319(6051), 321–324.CrossRefGoogle Scholar
  2. Ambrose, S. H., Buikstra, J., & Krueger, H. W. (2003). Status and gender differences in diet at Mound 72, Cahokia, revealed by isotopic analysis of bone. Journal of Anthropological Archaeology, 22(3), 217–226.CrossRefGoogle Scholar
  3. Anderson, M. K. (2013). Tending the wild: Native American knowledge and the management of California’s natural resources. Berkeley: University of California Press.Google Scholar
  4. Balasse, M., & Tresset, A. (2002). Early weaning of Neolithic domestic cattle (Bercy, France) revealed by intra-tooth variation in nitrogen isotope ratios. Journal of Archaeological Science, 29(8), 853–859.CrossRefGoogle Scholar
  5. Balasse, M., Smith, A. B., Ambrose, S. H., & Leigh, S. R. (2003). Determining sheep birth seasonality by analysis of tooth enamel oxygen isotope ratios: The Late Stone Age site of Kasteelberg (South Africa). Journal of Archaeological Science, 30(2), 205–215.CrossRefGoogle Scholar
  6. Barreta, J., Gutiérrez-Gil, B., Iñiguez, V., Saavedra, V., Chiri, R., Latorre, E., et al. (2013). Analysis of mitochondrial DNA in Bolivian llama, alpaca and vicuña populations: A contribution to the phylogeny of the South American camelids. Animal Genetics, 44(2), 158–168.Google Scholar
  7. Bovy, K. M. (2012). Zooarchaeological evidence for sandhill crane (Grus canadensis) breeding in northwestern Washington state. In S. Wolverton & R. L. Lyman (Eds.), Conservation biology and applied zooarchaeology (pp. 23–41). Tucson: University of Arizona Press.Google Scholar
  8. Broughton, J. M. (1999). Resource depression and intensification during the late Holocene, San Francisco Bay: Evidence from the Emeryville Shellmound vertebrate fauna. Anthropological Records, Vol. 32. Berkeley: University of California.Google Scholar
  9. Bruford, M. W., Bradley, D. G., & Luikart, G. (2003). DNA markers reveal the complexity of livestock domestication. Nature Reviews Genetics, 4, 900–910.CrossRefGoogle Scholar
  10. Burton, R. K., Gifford-Gonzalez, D., Snodgrass, J. J., & Koch, P. L. (2002). Isotopic tracking of prehistoric pinniped foraging and distribution along the central California coast: Preliminary results. International Journal of Osteoarchaeology, 12(1), 4–11.Google Scholar
  11. Burton, R. K., Snodgrass, J. J., Gifford-Gonzalez, D., Guilderson, T. P., Brown, T., & Koch, P. L. (2001). Middle to Late Holocene changes in the ecology of northern fur seals: insights from archaeofauna and stable isotopes. Oecologia, 128(1), 107–115.Google Scholar
  12. Butler, V. L. (2000). Resource depression on the Northwest Coast of North America. Antiquity, 74(285), 649–661.Google Scholar
  13. Butler, V. L., & Delacorte, M. G. (2004). Doing zooarchaeology as if it mattered: Use of faunal data to address current issues in fish conservation biology in Owens Valley, California. In R. L. Lyman & K. P. Cannon (Eds.), Zooarchaeology and conservation biology (pp. 25–44). Salt Lake City: University of Utah Press.Google Scholar
  14. Campana, M. G., Bower, M. A., & Crabtree, P. J. (2013). Ancient DNA for the archaeologist: The future of African research. African Archaeological Review, 30(1), 21–37.CrossRefGoogle Scholar
  15. Cannon, A., & Yang, D. Y. (2006). Early storage and sedentism on the Pacific Northwest Coast: Ancient DNA analysis of salmon remains from Namu, British Columbia. American Antiquity, 71(1), 123–140.Google Scholar
  16. Cannon, A., Yang, D., & Speller, C. F. (2011). Site-specific salmon fisheries on the central coast of British Columbia. In M. L. Moss & A. Cannon (Eds.), The archaeology of North Pacific fisheries (pp. 57–74). Fairbanks: University of Alaska Press.Google Scholar
  17. Clementz, M. T., & Koch, P. L. (2001). Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel. Oecologia, 129(3), 461–472.CrossRefGoogle Scholar
  18. Crockford, S. J., & Frederick, S. G. (2011). Neoglacial sea ice and life history flexibility in ringed and fur seals. In T. J. Braje & T. C. Rick (Eds.), Human impacts on seals, sea lions, and sea otters integrating archaeology and ecology in the Northeast Pacific (pp. 65–91). Berkeley: University of California Press.Google Scholar
  19. Crowley, B. E., Godfrey, L. R., Guilderson, T. P., Zermeño, P., Koch, P. L., & Dominy, N. J. (2012). Extinction and ecological retreat in a community of primates. Proceedings of the Royal Society B: Biological Sciences, 279, 3597–3605.CrossRefGoogle Scholar
  20. DeNiro, M. J., & Epstein, S. (1978). Carbon isotopic evidence for different feeding patterns in two hyrax species occupying the same habitat. Science, 201(4359), 906–908.CrossRefGoogle Scholar
  21. Ehleringer, J. R., & Monson, R. K. (1993). Evolutionary and ecological aspects of photosynthetic pathway variation. Annual Review of Ecology and Systematics, 24, 411–439.CrossRefGoogle Scholar
  22. Emiliani, C. (1958). Paleotemperature analysis of Core 280 and Pleistocene correlations. Journal of Geology, 66(3), 264–275.CrossRefGoogle Scholar
  23. Etnier, M. A. (2002). The effects of human hunting on northern fur seal (Callorhinus ursinus) migration and breeding distributions in the Late Holocene. Doctoral dissertation, University of Washington, Seattle.Google Scholar
  24. Gat, J. R. (1996). Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences, 24(1), 225–262.CrossRefGoogle Scholar
  25. Gerry, J. P. (1997) Bone isotope ratios and their bearing on elite privilege among the Classic Maya. Geoarchaeology 12(1):41–69Google Scholar
  26. Gifford-Gonzalez, D. (2011). Holocene Monterey Bay fur seals: Distribution, dates, and ecological implications. In T. J. Braje & T. C. Rick (Eds.), Human impacts on seals, sea lions, and sea otters integrating archaeology and ecology in the Northeast Pacific (pp. 221–241). Berkeley: University of California Press.Google Scholar
  27. Grayson, D. K. (2011). The Great Basin: A natural prehistory. Berkeley: University of California Press.Google Scholar
  28. Green, R. E., Krause, J., Briggs, A. W., Marcic, T., Stenzel, U., Kircher, M., et al. (2010). A draft sequence of the Neandertal genome. Science, 328(5979), 710–722.CrossRefGoogle Scholar
  29. Hardin, G. (1968). The tragedy of the commons. Science, 162(3859), 1243–1248.CrossRefGoogle Scholar
  30. Hartwell, L. H. (2011). Genetics: From genes to genomes (4th ed.). New York: McGraw Hill.Google Scholar
  31. Homewood, K. M., & Rodgers, W. A. (1984). Pastoralism and conservation. Human Ecology, 12(4), 431–441.CrossRefGoogle Scholar
  32. Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., et al. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293(5530), 629–638.CrossRefGoogle Scholar
  33. Johnson, D. L. (1993). Nomadism and desertification in Africa and the Middle East. GeoJournal, 31(1), 51–66.CrossRefGoogle Scholar
  34. Jones, T. L., Brown, G. M., Raab, L. M., McVickar, J. L., Spaulding, W. G., Kennett, D. J., et al. (1999). Environmental imperatives reconsidered: Demographic crises in western North America during the Medieval Climatic Anomaly. Current Anthropology, 40(2), 137–170.Google Scholar
  35. Kay, C. E. (2002). False gods, ecological myths, and biological reality. In C. E. Kay & R. T. Simmons (Eds.), Wilderness and political ecology: Aboriginal influences and the original state of nature (pp. 238–261). Salt Lake City: University of Utah Press.Google Scholar
  36. Kimura, B., Marshall, F. B., Chen, S., Rosenbom, S., Moehlman, P. D., Tuross, N., et al. (2011). Ancient DNA from Nubian and Somali wild ass provides insights into donkey ancestry and domestication. Proceedings of the Royal Society B: Biological Sciences, 278(1702), 50–57.CrossRefGoogle Scholar
  37. Kjekshus, H. (1996[1976]). Ecology control and economic development in East African history. Athens, OH: Ohio University Press.Google Scholar
  38. Koboldt, D. C., Steinberg, K. M., Larson, D. E., Wilson, R. K., & Mardis, E. R. (2013). The next-generation sequencing revolution and its impact on genomics. Cell, 155(1), 27–38.CrossRefGoogle Scholar
  39. Koch, P. L. (2007). Isotopic study of the biology of modern and fossil vertebrates. In R. Michener & K. Lajtha (Eds.), Stable isotopes in ecology and environmental science (2nd ed., pp. 99–154). Malden: Blackwell Publishing.CrossRefGoogle Scholar
  40. Lambert, J. B., Szpunar, C. B., & Buikstra, J. E. (1979). Chemical analysis of excavated human bone from Middle and Late Woodland sites. Archaeometry, 21, 115–129.Google Scholar
  41. Lamprey, H. F., & Waller, R. (1990). The Loita-Mara region in historical times: Patterns of subsistence, settlement and ecological change. In P. T. Robertshaw (Ed.), Early pastoralists of south-western Kenya (pp. 16–35). Nairobi: British Institute in Eastern Africa.Google Scholar
  42. Larson, G., Dobney, K., Albarella, U., Fang, M., Matisoo-Smith, E., Robins, J., et al. (2005). Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science, 307(5715), 1618–1621.Google Scholar
  43. Larson, G., Albarella, U., Dobney, K., Rowley-Conwy, P., Schibler, J., Tresset, A., et al. (2007). Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proceedings of the National Academy of Sciences, 104(39), 15276–15281, doi:10.1073/pnas.0703411104.Google Scholar
  44. Lauwerier, R. C. G. M., & Plug, I. (Eds.). (2004). The future from the past: Archaeozoology in wildlife conservation and heritage management). Oxford, UK: Oxbow Books.Google Scholar
  45. Lee-Thorp, J. A., van der Merwe, N. J., & Brain, C. K. (1989). Isotopic evidence for dietary differences between two extinct baboon species from Swartkrans. Journal of Human Evolution, 18(3), 183–189.CrossRefGoogle Scholar
  46. Lee-Thorp, J. A., van der Merwe, N. J., & Brain, C. K. (1994). Diet of Australopithecus robustus at Swartkrans from stable carbon isotopic analysis. Journal of Human Evolution, 27(4), 361–372.CrossRefGoogle Scholar
  47. Lightfoot, K. G., Cuthrell, R. Q., Boone, C. M., Byrne, R., Chavez, A. S., Collins, L., et al. (2013). Anthropogenic burning on the Central California coast in late Holocene and early historical times: Findings, implications, and future directions. California Archaeology, 5(2), 371–390.CrossRefGoogle Scholar
  48. Lyman, R. L. (1996). Applied zooarchaeology: The relevance of faunal analysis to wildlife management. World Archaeology, 28(1), 110–125.Google Scholar
  49. Lyman, R. L. (1998). White goats, white lies: The abuse of science in Olympic National Park. Salt Lake City: University of Utah Press.Google Scholar
  50. Lyman, R. L. (2010). Prehistoric anthropogenic impacts to local and regional faunas are not ubiquitous. In R. M. Dean (Ed.), The archaeology of anthropogenic environments (pp. 204–224, Center for Archaeological Investigations, Occasional Paper, Vol. 37). Carbondale: Southern IlIinois University Press.Google Scholar
  51. Lyman, R. L., & Cannon, K. P. (Eds.). (2004). Zooarchaeology and conservation biology. Salt Lake City: University of Utah Press.Google Scholar
  52. Marshall, F. B., Dobney, K., Denham, T., & Capriles, J. M. (2014). Evaluating the roles of directed breeding and gene flow in animal domestication. Proceedings of the National Academy of Sciences, 111(17), 6153–6158.CrossRefGoogle Scholar
  53. Martin, P. S. (2002). Prehistoric extinctions: In the shadow of man. In C. E. Kay & R. T. Simmons (Eds.), Wilderness and political ecology: Aboriginal influences and the original state of nature (pp. 1–27). Salt Lake City: University of Utah Press.Google Scholar
  54. Martin, G. (2006). Rare fur seals reclaim place on Farallon Islands. Animals fled 1834 slaughter; now they’re back and breeding. (2006, September 11). San Francisco Chronicle SFGate
  55. Matisoo-Smith, E., & Horsburgh, K. A. (2012). DNA for archaeologists. Walnut Creek: Left Coast Press.Google Scholar
  56. McCabe, J. T. (1990). Turkana pastoralism: A case against the tragedy of the commons. Human Ecology, 18(1), 81–103.CrossRefGoogle Scholar
  57. Meadows, J. R. S., Cemal, I., Karaca, O., Gootwine, E., & Kijas, J. W. (2007). Five ovine mitochondrial lineages identified from sheep breeds of the near east. Genetics, 175(3), 1371–1379.CrossRefGoogle Scholar
  58. Naderi, S., Rezaei, H.-R., Pompanon, F., Blum, M. G. B., Negrini, R., Naghash, H.-R., et al. (2008). The goat domestication process inferred from large-scale mitochondrial DNA analysis of wild and domestic individuals. Proceedings of the National Academy of Science, 105(46), 17659–17664.CrossRefGoogle Scholar
  59. Nagaoka, L. (2012). The overkill hypothesis and conservation biology. In S. Wolverton & L. R. Lyman (Eds.), Conservation biology and applied zooarchaeology (pp. 110–138). Tucson: University of Arizona Press.Google Scholar
  60. Newsome, S. D., Phillips, D. L., Culleton, B. J., Guilderson, T. P., & Koch, P. L. (2004). Dietary reconstruction of an Early to Middle Holocene human population from the central California coast: Insights from advanced stable isotope mixing models. Journal of Archaeological Science, 31(8), 1101–1115.Google Scholar
  61. Newsome, S. D., Etnier, M. A., Gifford-Gonzalez, D., Phillips, D. L., van Tuinen, M., Hadly, E. A., et al. (2007). The shifting baseline of fur seal ecology in the Northeast Pacific Ocean. Proceedings of the National Academy of Sciences, 104(23), 9709–9714.CrossRefGoogle Scholar
  62. Noe-Nygaard, N. (1988). δ13C-values of dog bones reveal the nature of changes in man’s food resources at the Mesolithic-Neolithic transition, Denmark. Chemical Geology: Isotope Geoscience Section 73(1), 87–96Google Scholar
  63. O’Brien, S. J., Johnson, W., Driscoll, C., Pontius, J., Pecon-Slattery, J., & Menotti-Raymond, M. (2008). State of cat genomics. Trends in Genetics, 24(6), 268–279.CrossRefGoogle Scholar
  64. O’Leary, M. H. (1981). Carbon isotope fractionation in plants. Phytochemistry, 20(4), 553–567.CrossRefGoogle Scholar
  65. Oelze, V. M., Siebert, A., Nicklisch, N., Meller, H., Dresely, V., & Alt, K. W. (2011). Early Neolithic diet and animal husbandry: Stable isotope evidence from three Linearbandkeramik (LBK) sites in central Germany. Journal of Archaeological Science, 38(2), 270–279.Google Scholar
  66. Ostrom, E., Burger, J., Field, C. B., Norgaard, R. B., & Policansky, D. (1999). Revisiting the commons: Local lessons, global challenges. Science, 284(5412), 278–282.CrossRefGoogle Scholar
  67. Ottoni, C., Van Neer, W., De Cupere, B., Daligault, J., Guimaraes, S., Peters, J., et al. (2017). The palaeogenetics of cat dispersal in the ancient world. Nature Ecology & Evolution, 1(0139).
  68. Pavao-Zuckerman, B., Lange, R. C., & Adams, E. C. (2006). FaunAZ: Arizona’s archaeofaunal index.
  69. Percival, A. B., & Cuming, E. D. (1925). A game ranger’s note book. London: Nisbet.Google Scholar
  70. Peterson, R. S., LeBoeuf, B. J., & DeLong, R. L. (1968). Fur seals from the Bering Sea breeding in California. Nature, 219(5157), 899–901.CrossRefGoogle Scholar
  71. Pilot, M., Jędrzejewski, W., Sidorovich, V. E., Meier-Augenstein, W., & Hoelzel, A. R. (2012). Dietary differentiation and the evolution of population genetic structure in a highly mobile carnivore. PLoS One, 7(6), e39341. Scholar
  72. Pinsky, M. L., Newsome, S. D., Dickerson, B. R., Fang, Y., Van Tuinen, M., Kennett, D. J., et al. (2010). Dispersal provided resilience to range collapse in a marine mammal: Insights from the past to inform conservation biology. Molecular Ecology, 19(12), 2418–2429.Google Scholar
  73. Pyle, P., Long, D. J., Schonewald, J., Jones, R. E., & Roletto, J. (2001). Historical and recent colonization of the South Farallon Islands, California by northern fur seals (Callorhinus ursinus). Marine Mammal Science, 17(2), 397–402.CrossRefGoogle Scholar
  74. Reitz, E. (2004). The use of archaeofaunal data in fish management. In R. C. G. M. Lauwerier, & I. Plug (Eds.), The future from the past: Archaeozoology in wildlife conservation and heritage management (pp. 19–33). Oxford, UK: Oxbow Books.Google Scholar
  75. Reitz, E. J., & Wing, E. S. (2008). Zooarchaeology (2nd ed.). Cambridge, UK: Cambridge University Press.Google Scholar
  76. Richards, M. P., Trinkaus, E., & Klein, R. G. (2009). Isotopic evidence for the diets of European Neanderthals and early modern humans. Proceedings of the National Academy of Sciences, 106(38), 16034–16039.CrossRefGoogle Scholar
  77. Ricketts, R. D., & Johnson, T. C. (1996). Climate change in the Turkana basin as deduced from a 4000 year long δO18 record. Earth and Planetary Science Letters, 142(1–2), 7–17.CrossRefGoogle Scholar
  78. Rosania, C. N. (2012). Paleozoological stable isotope data for modern management of historically extirpated Missouri black bears (Ursus americanus). In S. Wolverton & R. L. Lyman (Eds.), Conservation biology and applied zooarchaeology (pp. 139–156). Tucson: University of Arizona Press.Google Scholar
  79. Schoeninger, M. J. (1979). Diet and status at Chalcatzingo: Some empirical and technical aspects of strontium analysis. American Journal of Physical Anthropology, 51(3), 295–309.CrossRefGoogle Scholar
  80. Schoeninger, M. J. (1985). Trophic level effects on 15N/14N and 13C/12C ratios in bone collagen and strontium levels in bone mineral. Journal of Human Evolution, 14(5), 515–525.CrossRefGoogle Scholar
  81. Schoeninger, M. J., & DeNiro, M. T., & Tauber, H. (1983). 15N/14N ratios of bone collagen reflect marine and terrestrial components of prehistoric human diet. Science, 220, 1381–1383.Google Scholar
  82. Schoeninger, M. J., & Peebles, C. S. (1981). Effect of mollusc eating on human bone strontium levels. Journal of Archaeological Science, 8(4), 391–397.CrossRefGoogle Scholar
  83. Schroeder, H., O’Connell, T. C., Evans, J. A., Shuler, K. A., & Hedges, R. E. M. (2009). Trans-Atlantic slavery: Isotopic evidence for forced migration to Barbados. American Journal of Physical Anthropology, 139(4), 547–557.
  84. Schwarcz, H., Melbye, P. J., Katzenburg, M. A., & Knyf, M. (1985). Stable isotopes in human skeletons of southern Ontario: Reconstructing palaeodiet. Journal of Archaeological Science, 12(3), 187–206.Google Scholar
  85. Sealy, J. C., & van der Merwe, N. J. (1988). Social, spatial and chronological patterning in marine food use as determined by δ13C measurements of Holocene human skeletons from the south-western Cape. World Archaeology, 20(1), 87–102.Google Scholar
  86. Sealy, J. C., Armstrong, R., & Schrire, C. (1995). Beyond lifetime averages: Tracing life histories through isotopic analysis of different calcified tissues from archaeological human skeletons. Antiquity, 69(263), 290–300.CrossRefGoogle Scholar
  87. Shackleton, N. J. (1967). Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature, 215(5096), 15–17.CrossRefGoogle Scholar
  88. Shackleton, N. J. (1968). Depth of pelagic foraminifera and isotopic changes in Pleistocene oceans. Nature, 218(5136), 79–80.CrossRefGoogle Scholar
  89. Speller, C. F., Hauser, L., Lepofsky, D., Moore, J., Rodrigues, A. T., Moss, M. L., et al. (2012). High potential for using DNA from ancient herring bones to inform modern fisheries management and conservation. PLoS One, 7(11), e51122. Scholar
  90. Sulzman, E. W. (2007). Stable isotope chemistry and measurement: A primer. In R. Michener & K. Lajtha (Eds.), Stable isotopes in ecology and environmental science (2nd ed., pp. 1–21). Malden: Blackwell Scientific Publications.Google Scholar
  91. Tauber, H. (1981). 13C evidence for dietary habits of prehistoric man in Denmark. Nature, 292(5821), 332–333.CrossRefGoogle Scholar
  92. van der Merwe, N. J., & Vogel, J. C. (1978). 13C content of human collagen as a measure of prehistoric diet in woodland North America. Nature, 276, 815–816.CrossRefGoogle Scholar
  93. vonHoldt, B. M., Pollinger, J. P., Lohmueller, K. E., Han, E., Parker, H. G., Quignon, P., et al. (2010). Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature, 464(7290), 898–902.CrossRefGoogle Scholar
  94. Walker, P. L., & DeNiro, M. J. (1989). Stable nitrogen and carbon isotope ratios in bone collagen as indices of prehistoric dietary dependence on marine and terrestrial resources in southern California. American Journal of Physical Anthropology, 71(1), 51–61.Google Scholar
  95. Whitaker, A. R., & Hildebrandt, W. R. (2011). Why were northern fur seals spared in northern California? A cultural and archaeological explanation. In T. J. Braje & T. C. Rick (Eds.), Human impacts on seals, sea lions, and sea otters: Integrating archaeology and ecology in the Northeast Pacific (pp. 197–220). Berkeley: University of California Press.Google Scholar
  96. White, C. D., & Schwarcz, H. P. (1989). Ancient Maya diet: As inferred from isotopic and elemental analysis of human bone. Journal of Archaeological Science, 16(5), 451–474.CrossRefGoogle Scholar
  97. White, C. D., Pohl, M. E. D., Schwarcz, H. P., & Longstaffe, F. J. (2001). Isotopic evidence for Maya patterns of deer and dog use at Preclassic Colha. Journal of Archaeological Science, 28(1), 89–107.CrossRefGoogle Scholar
  98. White, C. D., Spence, M. W., Longstaffe, F., Stuart-Williams, J. H., & Law, K. R. (2002). Geographic identities of the sacrificial victims from the Feathered Serpent Pyramid, Teotihuacan: Implications for the nature of state power. Latin American Antiquity, 13(2), 217–236.CrossRefGoogle Scholar
  99. White, C. D., Pohl, M. D., Schwarcz, H. P., & Longstaffe, F. J. (2004). Feast, field, and forest: Deer and dog diets at Lagartero, Tikal, and Copán. In K. F. Emery (Ed.), Maya zooarchaeology: New directions in method and theory (pp. 141–158, Monograph, Vol. 51). Los Angeles: Cotsen Institute of Archaelogy, University of California, Los Angeles.Google Scholar
  100. Williams, G. W. (2002). Aboriginal use of fire: Are there any “natural” plant communities? In C. E. Kay & R. T. Simmons (Eds.), Wilderness and political ecology (pp. 179–214). Salt Lake City: University of Utah Press.Google Scholar
  101. Wolverton, S., & Lyman, R. L. (2012a). Conservation biology and applied zooarchaeology. Tucson: University of Arizona Press.Google Scholar
  102. Wolverton, S., & Lyman, R. L. (2012b). Introduction to applied zooarchaeology. In S. Wolverton & R. L. Lyman (Eds.), Conservation biology and applied zooarchaeology (pp. 1–22). Tucson: University of Arizona Press.Google Scholar
  103. Wright, J. D. (2000). Global climate change in marine stable isotope records. In J. S. Noller, J. M. Sowers, & W. R. Lettis (Eds.), Quaternary geochronology: Methods and applications (pp. 427–433, AGU Reference Shelf, Vol. 4). Washington, DC: American Geophysical Union.Google Scholar
  104. Zeder, M. A. (2001). A metrical analysis of a collection of modern goats (Capra hircus aegagrus and C. h. hircus) from Iran and Iraq: Implications for the study of caprine domestication. Journal of Archaeological Science, 28(1), 61–79.CrossRefGoogle Scholar
  105. Zeder, M. A. (2012). Pathways to animal domestication. In P. Gepts, T. R. Famula, R. L. Bettinger, S. B. Brush, A. B. Damania, P. E. McGuire, et al. (Eds.), Biodiversity in agriculture: Domestication, evolution, and sustainability (pp. 227–259). Cambridge: Cambridge University Press.Google Scholar
  106. Zeder, M. A., & Hesse, B. (2000). The initial domestication of goats (Capra hircus) in the Zagros Mountains 10,000 years ago. Science, 287(5461), 2254–2257.CrossRefGoogle Scholar
  107. Zeder, M. A., Emshwiller, E., Smith, B. D., & Bradley, D. G. (2006). Documenting domestication: The intersection of genetics and archaeology. Trends in Genetics, 22(3), 139–155.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Diane Gifford-Gonzalez
    • 1
  1. 1.Department of AnthropologyUniversity of CaliforniaSanta CruzUSA

Personalised recommendations