Skip to main content

Invertebrate, Plant, and Geological Effects on Bone

  • Chapter
  • First Online:
An Introduction to Zooarchaeology

Abstract

This chapter reviews the diverse effects that invertebrates, plants, weathering, sedimentary processes, and diagenesis can have on bone surfaces, interior structure, and ultimate survival. It aims to alert zooarchaeologists to processes that can affect skeletal elements soon after their discard, and thus possibly be displayed by archaeofaunal specimens as surface modifications or altered element frequencies. Abrasion presents interpretive challenges because several processes mobilize the same effectors to alter bone surfaces, and the chapter presents the useful distinction between impact and sliding abrasion, giving examples and illustrations. Microbial organisms have been shown to enlarge bone tissue pore spaces, in some cases enhancing diagenesis and in others enabling bone dissolution and destruction. Diagenesis was once thought to begin only after burial, but actualistic research has shown that this can begin when bones rest upon soil surfaces, and the chapter offers a guide to literature of this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews, P. (1990). Owls, caves, and fossils. Predation, preservation, and accumulation of small mammal bones in caves, with an analysis of the Pleistocene cave faunas from Westbury-sub-Mendip, Somerset, UK. Chicago: University of Chicago Press.

    Google Scholar 

  • Bader, K. S., Hasiotis, S. T., & Martin, L. D. (2009). Application of forensic science techniques to trace fossils on dinosaur bones from a quarry in the Upper Jurassic Morrison Formation, Northeastern Wyoming. Palaios, 24(3), 140–158.

    Google Scholar 

  • Behrensmeyer, A. K. (1975). The taphonomy and paleoecology of Plio-Pleistocene vertebrate assemblages east of Lake Rudolph, Kenya. Bulletin of the Museum of Comparative Zoology, 146, 473–578.

    Google Scholar 

  • Behrensmeyer, A. K. (1978). Taphonomic and ecologic information from bone weathering. Paleobiology, 4, 150–162.

    Article  Google Scholar 

  • Behrensmeyer, A. K., Gordon, K. D., & Yanagi, G. T. (1989). Nonhuman bone modification to Miocene fossils from Pakistan. In R. Bonnichsen & M. Sorg (Eds.), Bone modification (pp. 99–120). Orono, ME: Center for the Study of the First Americans, Institute for Quaternary Studies, University of Maine.

    Google Scholar 

  • Behrensmeyer, A. K., Stayton, C. T., & Chapman, R. E. (2003). Taphonomy and ecology of modern avifaunal remains from Amboseli Park, Kenya. Paleobiology, 29(1), 52–70.

    Article  Google Scholar 

  • Belardi, J. B., & Rindel, D. (2008). Taphonomic and archeological aspects of massive mortality processes in guanaco (Lama guanicoe) caused by winter stress in Southern Patagonia. Quaternary International, 180(1), 38–51.

    Article  Google Scholar 

  • Blumenschine, R. J., Prassack, K. A., Kreger, C. D., & Pante, M. C. (2007). Carnivore tooth-marks, microbial bioerosion, and the invalidation of Domínguez-Rodrigo and Barba’s (2006) test of Oldowan hominin scavenging behavior. Journal of Human Evolution, 53(4), 420–426.

    Article  Google Scholar 

  • Boaz, N. T., & Behrensmeyer, A. K. (1976). Hominid taphonomy: Transport of human skeletal parts in an artificial fluvial environment. American Journal of Physical Anthropology, 45(1), 53–60.

    Article  Google Scholar 

  • Bocheński, Z. M., & Tomek, T. (1997). Preservation of bird bones: Erosion versus digestion by owls. International Journal of Osteoarchaeology, 7(4), 372–387.

    Article  Google Scholar 

  • Borella, F., & Muñoz, A. S. (2006). Observaciones tafonómicas sobre restos de pinnípedos en la costa norte fuegina (Argentina). Intersecciones en Antropología, 7(1–2), 399–403.

    Google Scholar 

  • Borrero, L. A. (1990). Taphonomy of guanaco bones in Tierra del Fuego (Argentina). Quaternary Research, 34(3), 361–371.

    Article  Google Scholar 

  • Brain, C. K. (1965). Bone weathering and the problem of bone pseudo-tools. South African Journal of Science, 63(3), 97–99.

    Google Scholar 

  • Brain, C. K. (1974). Some suggested procedures in the analysis of bone accumulations from Southern African quaternary sites. Annals of the Transvaal Museum, 29(1), 1–8.

    Google Scholar 

  • Bromage, T. G. (1984). Interpretation of scanning electron microscope images of abraded forming bone surfaces. American Journal of Physical Anthropology, 64(2), 161–178.

    Article  Google Scholar 

  • Cruz, I. (2008). Avian and mammalian bone taphonomy in southern continental Patagonia: A comparative approach. Quaternary International, 180(1), 30–37.

    Article  Google Scholar 

  • Cutler, A. H., Behrensmeyer, A. K., & Chapman, R. E. (1999). Environmental information in a recent bone assemblage: Roles of taphonomic processes and ecological change. Palaeogeography, Palaeoclimatology, Palaeoecology, 149(1–4), 359–372.

    Google Scholar 

  • Davis, P. G. (1997). The bioerosion of bird bones. International Journal of Osteoarchaeology, 7(4), 388–401.

    Article  Google Scholar 

  • Domínguez-Rodrigo, M., & Barba, R. (2006). New estimates of tooth mark and percussion mark frequencies at the FLK Zinj site: The carnivore-hominid-carnivore hypothesis falsified. Journal of Human Evolution, 50(2), 170–194.

    Google Scholar 

  • Domínguez-Rodrigo, M., & Barba, R. (2007). Five more arguments to invalidate the passive scavenging version of the carnivore-hominid-carnivore model: A reply to Blumenschine et al. (2007a). Journal of Human Evolution, 53(4), 427–433.

    Article  Google Scholar 

  • Fejfar, O., & Kaiser, T. M. (2005). Insect bone-modification and paleoecology of Oligocene mammal-bearing sites in the Doupov Mountains, northwestern Bohemia. Palaeontologia Electronica, 8(1), 1–11.

    Google Scholar 

  • Fernández-Jalvo, Y., & Andrews, P. (2016). Atlas of taphonomic identifications: 1001+ images of fossil and recent mammal bone modification (Vertebrate paleobiology and paleoanthropology). Dordrecht: Springer.

    Google Scholar 

  • Fiorillo, A. R. (1995). Possible influence of low temperature on bone weathering in Curecanti National Recreation Area, southwest Colorado. Current Research in the Pleistocene, 12, 69–71.

    Google Scholar 

  • Gifford, D. P. (1984). Taphonomic specimens, Lake Turkana. In National Geographic Research Reports, National Geographic Research Reports (Vol. 17, pp. 419–428). Washington, DC: National Geographic Society.

    Google Scholar 

  • Gifford, D. P., & Behrensmeyer, A. K. (1977). Observed formation and burial of a recent human occupation site in Kenya. Quaternary Research, 8(3), 245–266.

    Article  Google Scholar 

  • Gifford, D. P., Isaac, G. L., & Nelson, C. M. (1980). Evidence for predation and pastoralism at Prolonged Drift, a Pastoral Neolithic site in Kenya. Azania, 15, 57–108.

    Google Scholar 

  • Gifford-Gonzalez, D. P., Damrosch, D. B., Damrosch, D. R., Pryor, J., & Thunen, R. L. (1985). The third dimension in site structure: An experiment in trampling and vertical dispersal. American Antiquity, 50(4), 803–818.

    Article  Google Scholar 

  • Hackett, C. J. (1981). Microscopical focal destruction (tunnels) in exhumed human bones. Medicine, Science and the Law, 21(4), 243–265.

    Article  Google Scholar 

  • Haynes, G. (1988). Longitudinal studies of African elephant death and bone deposits. Journal of Archaeological Science, 15(2), 131–157.

    Article  Google Scholar 

  • Haynes, G. (1991). Mammoths, mastodons, and elephants. Biology, behavior, and the fossil record. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hedges, R. E. M. (2002). Bone diagenesis: An overview of processes. Archaeometry, 44(3), 319–328.

    Article  Google Scholar 

  • Jans, M. M. E. (2008). Microbial bioerosion of bone: A review. In M. Wisshak & L. Tapanila (Eds.), Current developments in bioerosion, Erlangen earth conference series (pp. 397–413). Berlin: Springer-Verlag.

    Google Scholar 

  • Jans, M. M. E., Nielsen-Marsh, C. M., Smith, C. I., Collins, M. J., & Kars, H. (2004). Characterisation of microbial attack on archaeological bone. Journal of Archaeological Science, 31(1), 87–95.

    Article  Google Scholar 

  • Koch, P. L. (2007). Isotopic study of the biology of modern and fossil vertebrates. In R. Michener & K. Lajtha (Eds.), Stable isotopes in ecology and environmental science (2nd ed., pp. 99–154). Malden, MA: Blackwell Publishing.

    Chapter  Google Scholar 

  • Lawrence, D. R. (1979a). Biostratinomy. In D. Jablonski & R. W. Fairbridge (Eds.), Encyclopedia of paleontology (pp. 99–102). Stroudsburg, PA: Dowden, Hutchinson & Ross.

    Chapter  Google Scholar 

  • Lawrence, D. R. (1979b). Diagenesis of fossils - fossildiagenese. In D. Jablonski & R. W. Fairbridge (Eds.), Encyclopedia of paleontology (pp. 245–247). Stroudsburg, PA: Dowden, Hutchinson & Ross.

    Chapter  Google Scholar 

  • Lee-Thorp, J. A., & Sealy, J. C. (2008). Beyond documenting diagenesis: The fifth international bone diagenesis workshop. Palaeogeography, Palaeoclimatology, Palaeoecology, 266(3–4), 129–133.

    Article  Google Scholar 

  • Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lyman, R. L., & Fox, G. L. (1989). A critical evaluation of bone weathering as an indication of bone assemblage formation. Journal of Archaeological Science, 16(3), 293–317.

    Article  Google Scholar 

  • Miller, G. J. (1975). A study of cuts, grooves, and other marks on recent and fossil bone: II weathering cracks, fractures, splinters and other similar natural phenomena. In E. H. Swanson (Ed.), Lithic technology: Making and using stone tools(pp. 211–226). Chicago: Aldine.

    Google Scholar 

  • Miller, J. H., Behrensmeyer, A. K., Du, A., Lyons, S. K., Patterson, D., Tóth, A., et al. (2014). Ecological fidelity of functional traits based on species presence-absence in a modern mammalian bone assemblage (Amboseli, Kenya). Paleobiology, 40(4), 560–583.

    Article  Google Scholar 

  • Oakley, K. P. (1964). The problem of man's antiquity: An historical survey. Bulletin of the British Museum (Natural History), 9(5), 85–155.

    Google Scholar 

  • Olsen, S. L. (1989). On distinguishing natural from cultural damage on archaeological antler. Journal of Archaeological Science, 16(2), 125–135.

    Article  Google Scholar 

  • Olsen, S. L., & Shipman, P. (1988). Surface modification on bone: Trampling versus butchery. Journal of Archaeological Science, 15(5), 535–554.

    Article  Google Scholar 

  • Potts, R. B. (1986). Temporal span of bone accumulation at Olduvai Gorge and implications for early hominid foraging behavior. Paleobiology, 12, 25–31.

    Article  Google Scholar 

  • Reitz, E. J., & Wing, E. S. (2008). Zooarchaeology(2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Rogers, A. R. (2000). On equifinality in faunal analysis. American Antiquity, 65(4), 709–723.

    Google Scholar 

  • Rolfe, W. D. I., & Brett, D. W. (1969). Fossilization processes. In G. Eglinton & M. T. J. Murphy (Eds.), Organic geochemistry: Methods and results (pp. 213–244). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Seilacher, A. (1973). Biostratinomy: the sedimentology of biological standardized particles. In R. N. Ginsburg (Ed.), Evolving concepts in sedimentology (pp. 159–177). Baltimore: John Hopkins University Press.

    Google Scholar 

  • Shipman, P. (1989). Altered bones from Olduvai Gorge, Tanzania: Techniques, problems, and implications of their recognition. In R. Bonnichsen & M. Sorg (Eds.), Bone modification (pp. 317–334). Orono, ME: Center for the Study of the First Americans, Institute for Quaternary Studies, University of Maine.

    Google Scholar 

  • Sillen, A. (1989). Diagenesis of the inorganic phase of cortical bone. In T. D. Price (Ed.), The chemistry of prehistoric human bone (pp. 211–229). Cambridge: Cambridge University Press.

    Google Scholar 

  • Sillen, A., Sealy, J. C., & van der Merwe, N. J. (1989). Chemistry and paleodietary research: No more easy answers. American Antiquity, 54(3), 504–512.

    Google Scholar 

  • Smith, C. I., Nielsen-Marsh, C. M., Jans, M. M. E., & Collins, M. J. (2007). Bone diagenesis in the European Holocene I: Patterns and mechanisms. Journal of Archaeological Science, 34(9), 1485–1493.

    Article  Google Scholar 

  • Tappen, M. (1995). Savanna ecology and natural bone deposition: Implications for early hominid site formation, hunting, and scavenging. Current Anthropology, 36(2), 223–260.

    Article  Google Scholar 

  • Thorson, R. M., & Guthrie, R. D. (1984). River ice as a taphonomic agent: An alternative hypothesis for bone “artifacts.” Quaternary Research, 22(2), 172–188.

    Google Scholar 

  • Todd, L. C. (1983). The Horner site: Taphonomy of an early Holocene bison bonebed. Doctoral dissertation, University of New Mexico, Albuquerque.

    Google Scholar 

  • Trueman, C. N., Behrensmeyer, A. K., Tuross, N., & Weiner, S. (2004). Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: Diagenetic mechanisms and the role of sediment pore fluids. Journal of Archaeological Science, 31(6), 721–739.

    Google Scholar 

  • Trueman, C. N., & Martill, D. M. (2002). The long-term survival of bone: The role of bioerosion. Archaeometry, 44(3), 371–382.

    Article  Google Scholar 

  • Turner-Walker, G., & Jans, M. M. E. (2008). Reconstructing taphonomic histories using histological analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 266(3–4), 227–235.

    Article  Google Scholar 

  • Turner-Walker, G., & Peacock, E. E. (2008). Preliminary results of bone diagenesis in Scandinavian bogs. Palaeogeography, Palaeoclimatology, Palaeoecology, 266(3–4), 151–159.

    Article  Google Scholar 

  • Tuross, N., Behrensmeyer, A. K., & Eanes, E. D. (1989). Strontium increases and crystallinity changes in taphonomic and archaeological bone. Journal of Archaeological Science, 16(6), 661–672.

    Article  Google Scholar 

  • Tuross, N., Behrensmeyer, A. K., Eanes, E. D., Fisher, L. W., & Hare, P. E. (1989). Molecular preservation and crystallographic alterations in a weathering sequence of wildebeest bones. Applied Geochemistry, 4(3), 261–270.

    Article  Google Scholar 

  • Villa, P. (1982). Conjoinable pieces and site formation processes. American Antiquity, 47(2), 276–290.

    Article  Google Scholar 

  • Villa, P., & Courtin, J. (1983). The interpretation of stratified sites: a view from underground. Journal of Archaeological Science, 10(3), 267–281.

    Google Scholar 

  • Voorhies, M. R. (1969). Taphonomy and population dynamics of an early Pliocene vertebrate fauna, Knox County, Nebraska. Wyoming University Contributions in Geology, Special Paper, 1, 1–69.

    Google Scholar 

  • Wedl, C. (1864). Über einen im Zahnbein und Knochen keimenden Pilz. Sitzungsberichte Naturwissenschaftliche Klasse ABI, Mineralogie, Biologie, Erdkunde, 50, 171–193.

    Google Scholar 

  • Western, D., & Behrensmeyer, A. K. (2009). Bone assemblages track animal community structure over 40 years in an African savanna ecosystem. Science, 324(5930), 1061–1064.

    Article  Google Scholar 

  • White, T. D., & Folkens, P. A. (2005). The human bone manual. Boston: Elsevier Academic.

    Google Scholar 

  • Wyckoff, R. W. G. (1972). The biochemistry of animal fossils. Bristol: Scientechnica.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gifford-Gonzalez, D. (2018). Invertebrate, Plant, and Geological Effects on Bone. In: An Introduction to Zooarchaeology. Springer, Cham. https://doi.org/10.1007/978-3-319-65682-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65682-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65680-9

  • Online ISBN: 978-3-319-65682-3

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics