Skip to main content

Part of the book series: Springer Climate ((SPCL))

  • 668 Accesses

Abstract

Climate science as any other “scientific” endeavor manifest itself through publications and a simple statistics of them gives a faithful idea of what are the most discussed topics. There are two hot and recent development in the climate sciences which are the warming hiatus and the geoengineering. We will deal at length with them in the chapter but just to summarize, the warming hiatus is an apparent pause in the global warming which started at the end of last century and has been going on since then. Geoengineering is the purposeful modification of the environment to correct the effects of the anthropogenic activity. Both of these fields are quite controversial and they have produced a large number of publications. A statistics prepared in 2015 at the University of Texas, Austin uses the three key words, pause, slow down, or hiatus to recover that the total number of publications from 1990 to 2015 amount to 213 concentrated between 2013 and 2015. In the same time span, the citations reached a peak of roughly 850. Belter and Seidel 2013 published a bibliometric analysis on geoengineering examing the papers published between 1988 and 2011 for a total of 750 articles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, K., & Peters, G. (2016). The trouble with negative emissions. Science, 354, 182–183.

    Article  CAS  Google Scholar 

  • Arino, Y., Akimoto, K., Sano, F., Homma, T., Oda, J., & Tomoda, T. (2016). Estimating option values of solar radiation management assuming that climate sensitivity is uncertain. PNAS, 113, 5886–5891.

    Google Scholar 

  • Banerjee, A., et al. (2016). Drivers of changes in stratospheric and tropospheric ozone between year 2000 and 2100. Atmospheric Chemistry and Physics, 16, 2727–2746.

    Article  CAS  Google Scholar 

  • Belter, C. W., & Seidel, D. J. (2013). A bibliometric analysis of climate engineering research. WIREs Climate Change, 4, 417–427.

    Article  Google Scholar 

  • Broecker, W. S. (1987). How to build a habitable planet. Eldigio Press.

    Google Scholar 

  • Budyko, M.I. (1977). Climatic change. AGU.

    Google Scholar 

  • Canty, T., Mascioli, N. R., Smarte, M. D., & Salawitch, R. J. (2013). An empirical model of global climate-Part 1: A critical evaluation of volcanic cooling. Atmospheric Chemistry and Physics, 13, 3997. License from Copernicus Publications.

    Google Scholar 

  • Caldeira, K., & Bala, G. (2016). Reflecting on 50 years of geoengineering research. Earth’s Future, 4, 10–17. Reprinted by permission from Wiley Copyright and permission.

    Google Scholar 

  • Cicerone, R. J., Elliott, S., & Turco, R. P. (1991). Reduced Antarctic ozone depletions in a model with hydrocarbon injections. Science, 254, 1191–1994.

    Article  CAS  Google Scholar 

  • Cornwall, W., & Voosen, P. (2017). How a culture clash at NOAA led to a flap over a high profile warming pause study. Science Podcast. February 8.

    Google Scholar 

  • Crutzen, P. J. (2006). Albedo ehnancement by stratospheric sulfur injcetions: a contribution to resolve a policy dilemma. Climatic Change, 77, 211–219.

    Article  CAS  Google Scholar 

  • Elliott, S., Cicerone, R. J., Turco, R. P., Drdla, K., & Tabazadeh, A. (1994). Influence of the heterogeneous reaction HCl + HOCl on an ozone hole model with hydrocarbon additions. Journal of Geophysical Research, 99, 3497–3508.

    Article  CAS  Google Scholar 

  • Ferraro, A. J., Charlton-Perez, A. J., & Highwood, E. J. (2014). Stratospheric dynamics and midlatitude jets under geoengineering with space mirrors and sulfate and titania aerosols. Journal of Geophysical Research. doi:10.1002/2014JD022734.

  • Fujiwara, M., Hibino, T., Mehta, S. K., Gray, L., Mitchell, D., & Anstey, J. (2015). Global temperature response to the major volcanic eruptions in multiple reanalysis data sets. Atmospheric Chemistry and Physics, 15, 13507–13518.

    Article  CAS  Google Scholar 

  • Hartmann, D. L., et al. (2013). Observations: Atmosphere and surface. In T. F. Stocker & G.-K. Qin (Eds.), Climate change 2013: The physical science basis. Press: Cambridge Univ.

    Google Scholar 

  • Hansen, J. E., Wang, W. C., & Lacis, A. A. (1978). Mount Agung eruption provides test of a global climatic perturbation. Science, 199, 1065.

    Article  CAS  Google Scholar 

  • Heckendorn, P., et al. (2009). The impact of geoengineering aerosols on stratospheric temperature and ozone. Environmental Research Letters, 4, 045108.

    Article  Google Scholar 

  • Huber, M., & Knutti, R. (2014). N. Nature Geoscience, 7, 651–656.

    Article  CAS  Google Scholar 

  • Jackman, C. H., & Fleming, E. L. (2014). Stratospheric ozone response to a solar irradiance reduction in a quadrupled CO2 environment. Earth’s Future, 2, 331–340.

    Article  CAS  Google Scholar 

  • Karl, T. R., et al. (2015). Possible artifacts of data biases in the recent global surface warming hiatus. Science, 348, 1469–1472.

    Article  CAS  Google Scholar 

  • Keith, D. W., & Irvine, P. J. (2016). Solar geoengineering could substantially reduce climate risks–a research hypothesis for the next decade. Earth’s Future, 4, 549–559. Reprinted by permission from Wiley Copyright and permission.

    Google Scholar 

  • Keith, D. W., & Dowlatabadi, H. (1992). A serious look at geoengineering. EOS, 73, 289–293.

    Article  Google Scholar 

  • Keith, D. W., Weisenstein, D. K., Dykema, J. A., & Keutsch, F. N. (2016). Stratospheric solar geoengineering without ozone loss. PNAS, 113, 14910–14914.

    Article  CAS  Google Scholar 

  • Kosaka, Y., & Xie, S. P. (2013). Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403–407.

    Article  CAS  Google Scholar 

  • Kruger, T., Geden, O., & Rayner, S. (2016). Abandon hype in climate models. The Guardian. April 26.

    Google Scholar 

  • Lindzen, R. S. (2008). Is the global warming alarm founded on fact? In E. Zelillo (Ed.), Global Warming: looking beyond Kyoto. Brookings Institution Press. Permission granted from Brookings Institution Press.

    Google Scholar 

  • Lindzen, R. S. (2008). Response to Stefan Rahmstorf’s “Anthropogenic Climate Change: Revisiting the Facts”. www-eaps.mit.edu/faculty/Lindzen/L_R-Exchange.pdf

  • McClellan, J., Keith, D. W., & Apt, J. (2012). Cost analysis of stratospheric albedo modification delivery systems. Environmental Research Letters, 7. doi:10.1088/1748-9326/7/3/034019.

  • Medhaug, I., Stolpe, M. B., Fischer, E. M., & Knutti, R. (2017). Reconciling controversies about the ‘global warming hiatus’. Nature, 545, 41–47.

    Article  CAS  Google Scholar 

  • National Research Council. (1992). Policy implications of greenhouse warming: mitigation, adaptation and the science base(Chap. 28, pp. 433464). Washington, D. C.: Natl. Acad. Press.

    Google Scholar 

  • Nowack, P. J., Abraham, N. L., Maycock, A. C., Braesicke, P., Gregory, J. M., Joshi, M. M., et al. (2015). Stratospheric ozone changes under solar geoengineering: implications for UV exposure and air quality. Atmospheric Chemistry and Physics, 16, 4191–4203.

    Article  Google Scholar 

  • Pitari, G., et al. (2014). Stratospheric Ozone Response to sulphate geoengineering: results from the geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research. doi:10.1002/2013JD020566.

  • Pritchard, E. E. (1940). Witchcraft oracles, and magic among the azande. Oxford: Clarendon Press.

    Google Scholar 

  • Pope, F. D., Braesicke, P., Grainger, R. G., Kalberer, M., Watson, I. M., Davidson, P. J., et al. (2012). Stratospheric aerosol particles and solar radiation management. Nature Climate Change, 2, 713–719.

    Article  CAS  Google Scholar 

  • Rahmstorf, S. (2008). Annthropogenic climate change: revisting the fact. In E. Zelillo (Ed.), Global Warming: looking beyond Kyoto. Brookings Institution Press.

    Google Scholar 

  • Rayner, S. (2016). What might Evans-Pritchard have made of two degrees? Anthropology Today, 32, 1–2.

    Article  Google Scholar 

  • Risbey, J. S., & Lewandowsky, S. (2017). The ‘pause’ unpacked. Nature, 545, 37–39.

    Article  CAS  Google Scholar 

  • Robock, A. (2008). 20 reasons why geoengineering may be a bad idea. Bulletin of the Atomic Scientists, 64, 14–18.

    Article  Google Scholar 

  • Robock, A. (2016). Albedo enhancement by stratospheric sulfur injections: More research needed. Earth’s Future, 4, 644–648.

    Article  CAS  Google Scholar 

  • Schmidt, G. A., Shindell, D. T., & Tsigaridis, K. (2014). Reconciling warming trends. Nature Geoscience, 7, 158–160.

    Article  CAS  Google Scholar 

  • Sigl, M., McConnell, J. R., Toohey, M., Curran, M., Das, S., Edwards, R., et al. (2014). Insights from Antarctica on volcanic forcing during the common era. Nature Climate Change, 4, 693–697.

    Article  Google Scholar 

  • Smith, P., et al. (2015). Biophysical and economic limits to negative \(CO_2\) emissions. Nature Climate Change, 6, 42–50.

    Article  Google Scholar 

  • Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M., Sanford, T. J., et al. (2010). Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 1219–1223.

    Article  CAS  Google Scholar 

  • Tilmes, S., Garcia, R. R., Kinnison, D. E., Gettelman, A., & Rasch, P. J. (2009). Impact of geoengineered aerosols on the troposphere and stratosphere. Journal of Geophysical Research, 114(D12), 305.

    Article  Google Scholar 

  • Toohey, M., Kruger, K., & Timmreck, C. (2013). Volcanic sulfate deposition to Greenland and Antarctica: A modeling sensitivity study. Journal of Geophysical Research, 118, 4788–4800.

    CAS  Google Scholar 

  • Weisenstein, D. K., Keith, D. W., & Dykema, J. A. (2015). Solar geoengineering using solid aerosol in the stratosphere. Atmospheric Chemistry and Physics, 15, 11835–11859. License from Copernicus Publications.

    Google Scholar 

  • Wunderlich, F., & Mitchell, D.M. (2017).Revisiting the observed surface climate response to large volcanic eruptions. Atmospheric Chemistry and Physics, 17, 485–499.

    Google Scholar 

  • Xie, S.-P. (2016) The hiatus spurred great interest in planetary energy uptake and redistributionin the ocean. A rigorous test of energy theory requires, Nature Climate Change, 6, 345–346. Reprinted by permission from Macmillan Publishers Ltd.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Visconti .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Visconti, G. (2018). Recent Developments. In: Problems, Philosophy and Politics of Climate Science. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-319-65669-4_8

Download citation

Publish with us

Policies and ethics