Advertisement

Field Descriptions

Chapter
  • 414 Downloads
Part of the Springer Tracts in Modern Physics book series (STMP, volume 277)

Abstract

Advanced multipole descriptions are introduced for cylindrical ellptical, toorodial circular and toroidal ellptical coordinates are presented. Their properties and their basis functions are investigated. Furthermore it is shown how these can be recalcuated to circular ones if applicable.

References

  1. 1.
    A. Wolski, Maxwell’s equations for magnets, in CERN Accelerator School: Specialised Course on Magnets, ed. by D. Brandt, vol. CERN-2010-004 (CERN, CERN, 2010), pp. 1–38. Published as CERN Yellow Report, http://cdsweb.cern.ch/record/1158462
  2. 2.
    H. Wiedemann, Particle Accelerator Physics. (Springer, Berlin, 2007)Google Scholar
  3. 3.
    A. Devred, M. Traveria, Magnetic field and flux of particle accelerator magnets in complex formalism. not published, (1994)Google Scholar
  4. 4.
    P. Schnizer, Measuring system qualification for LHC arc quadrupole magnets. PhD thesis, (TU Graz, 2002)Google Scholar
  5. 5.
    P. Schnizer, B. Schnizer, P. Akishin, E. Fischer, Magnetic field analysis for superferric accelerator magnets using elliptic multipoles and its advantages. IEEE Trans. Appl. Supercon. 18(2), 1605–1608 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    P. Schnizer, B. Schnizer, P. Akishin, E. Fischer, Theory and application of plane elliptic multipoles for static magnetic fields. Nucl. Instrum. Methods Phys. Res. Sect. A 607(3), 505–516 (2009)ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    P. Schnizer, B. Schnizer, P. Akishin, E. Fischer, Plane elliptic or toroidal multipole expansions within the gap of straight or curved accelerator magnets, in 13th International IGTE Symposium. (Institut für Grundlagen und Theorie der Elektrotechnik, Technische Universität Graz, Austria, September 2008)Google Scholar
  8. 8.
    P. Schnizer, B. Schnizer, P. Akishin, E. Fischer, Theoretical field analysis for superferric accelerator magnets using plane elliptic or toroidal multipoles and its advantages, in The 11th European Particle Accelerator Conference. (June 2008), pp. 1773–1775Google Scholar
  9. 9.
    P. Schnizer, B. Schnizer, P. Akishin, E. Fischer, Plane elliptic or toroidal multipole expansions for static fields. Applications within the gap of straight and curved accelerator magnets. Int. J. Comput. Math. Electr. Eng. (COMPEL), 28(4), (2009)Google Scholar
  10. 10.
    P. Schnizer, B. Schnizer, P. Akishin, E. Fischer, Field representation for elliptic apertures. Technical report, (Gesellschaft für Schwerionenforschung mbH, Planckstraße 1, D-64291 Darmstadt, February, 2007)Google Scholar
  11. 11.
    P. Schnizer, B. Schnizer, P. Akishin, E. Fischer, Field representation for elliptic apertures. Technical report, (Gesellschaft für Schwerionenforschung mbH, Planckstraße 1, D-64291 Darmstadt, January, 2008)Google Scholar
  12. 12.
    E.A. Perevedentsev, A.L. Romanov, Eddy current effect on field multipoles arising in dipole magnets with elliptic and rectangular beam pipe, in The 11th European Particle Accelerator Conference. (June 2008), pp. 2383–2385Google Scholar
  13. 13.
    F.R. Peña, G. Franchetti, Elliptic and circular representation of the magnetic field for SIS100 (Technical report, GSI, 2008)Google Scholar
  14. 14.
    Chad E. Mitchell, Alex J. Dragt, Accurate transfer maps for realistic beam-line elements: Straight elements. Phys. Rev. ST Accel. Beams 13, 064001 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    P. Schnizer, B. Schnizer, E. Fischer, Cylindrical circular and elliptical, toroidal circular and elliptical multipoles, fields, potentials and their measurement for accelerator magnet, (October 2014) arXiv preprint physics.acc-ph Google Scholar
  16. 16.
    O.D. Kellog, Foundations of Potential Theory (Frederick Ungar Publ. Comp, New York, 1929), p. 213Google Scholar
  17. 17.
    S. Großmann, Funktionalanalysis I. (Akademische Verlagsgesellschaft, Frankfurt/Main, 1970), p. 82Google Scholar
  18. 18.
    P.M. Morse, H. Feshbach, Methods of Theoretical Physics, (McGraw Hill Book Comp., 1953)Google Scholar
  19. 19.
    S.I. Gradshteyn, I.M. Ryzhik, Table of Integrals (Academic Press, Series and Products, 1965)zbMATHGoogle Scholar
  20. 20.
    P. Schnizer, B. Schnizer, P. Akishin, E. Fischer, Toroidal circular and elliptic multipole expansions within the gap of curved accelerator magnets, in 14th International IGTE Symposium, Graz, Institut für Grundlagen und Theorie der Elektrotechnik (Technische Universität Graz, Austria, 2010)Google Scholar
  21. 21.
    P. Schnizer, B. Schnizer, E. Fischer, Magnetic field description in curved accelerator magnets using local toroidal multipoles, in Proceedings of the IPAC’11, San Sebastián, Spain, (September 2011), pp. 2154–2156Google Scholar
  22. 22.
    P. Schnizer, B. Schnizer, E. Fischer, A. Mierau, Some comments to magnetic field representation for beam dynamic calculations, in Proceedings of IPAC2012, (New Orleans, Louisiana, USA, 2012), pp. 262–264Google Scholar
  23. 23.
    E.A. Kraut, Fundamentals of Mathematical Physics. (Dover Publications Inc., 1995)Google Scholar
  24. 24.
    SymPy Development Team, SymPy: Python library for symbolic mathematics (2014)Google Scholar
  25. 25.
    P. Schnizer, B. Schnizer, P. Akishin, A. Mierau, E. Fischer, SIS100 dipole magnet optimisation and local toroidal multipoles. IEEE Trans. Appl. Supercon 22(3), 4001505–4001505 (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Helmholtz-Zentrum Berlin für Materialien und EnergieBerlinGermany

Personalised recommendations