Advertisement

Coordinate Systems

Chapter
  • 436 Downloads
Part of the Springer Tracts in Modern Physics book series (STMP, volume 277)

Abstract

For many problems an adapted coordinate system allows reducing the number of dimensions if chosen appropriately. A familiar example is the use of the polar coordinate system, which simplifies any circular problem independent of the polar angle. Here coordinate systems are presented, which are commonly known but have not been frequently applied for describing the fields of accelerator magnets.

Keywords

Accelerator Magnets Toroidal Coordinates Global Cartesian Coordinate System Toroidal Location Circular Cylindrical Coordinates 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Moon, Field Theory Handbook: Including Coordinate Systems, Differential Equations and Their Solutions (Springer, Berlin, 1988)Google Scholar
  2. 2.
    W. Papousek, Vektor Tensor Rechnung, vol. 2 (Skriptenreferat der Österreichischen Hochschülerschaft, Technische Hochschule in Graz, 1975)Google Scholar
  3. 3.
    E. Kreyszig, Advanced Engineering Mathematics (John Wiley and Sons Inc, New York, 1962)zbMATHGoogle Scholar
  4. 4.
    M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungmann, P. Alken, M. Booth, F. Rossi, GNU scientific library reference manual (Network Theory Limited, Jan. 2009)Google Scholar
  5. 5.
    T.E. Hull, T.F. Fairgrieve, P.T.P. Tang, Implementing the complex arcsine and arccosine functions using exception handling. ACM Trans. Math. Softw. 23(3), 299–335 (1997)CrossRefzbMATHGoogle Scholar
  6. 6.
    T.E. Hull, T.F. Fairgrieve, P.T.P. Tang, Implementing complex elementary functions using exception handling. ACM Trans. Math. Softw. 20(2), 215–244 (1994). JuneCrossRefzbMATHGoogle Scholar
  7. 7.
    Numerical Python. Hypertext Document at http://www.pfdubois.com/numpy/
  8. 8.
    M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover Publication Inc., New York, 1964)zbMATHGoogle Scholar
  9. 9.
    D.C. Chang, E.F. Kuester, Electromagnetic Waves and Curved Structures, Volume 2. IEE Electromagnetic Wave Series (P. Peregrinus on behalf of the Institution of Electrical Engineers, California, 1977)Google Scholar
  10. 10.
    W.D. D’haeseleer, W.N.G. Hitchon, J.D. Callen, J.-L. Shohet, Flux Coordinates and Magnetic Field Structure (Springer, Berlin, 1990)zbMATHGoogle Scholar
  11. 11.
    P. Schnizer, B. Schnizer, P. Akishin, E. Fischer, Plane elliptic or toroidal multipole expansions for static fields. Applications within the gap of straight and curved accelerator magnets. Int. J. Comput. Math. Electr. Eng. (COMPEL) 28(4), 1044–1058 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    B. Seiwald, On Magnetic Fields and MHD Equilibria in Stellarators. PhD thesis, Technische Universität Graz, Sept. 2007Google Scholar
  13. 13.
    R.A. Beth, Complex representation and computation of two-dimensional magnetic fields. Appl. Phys. 37, 2568–71 (1966)CrossRefGoogle Scholar
  14. 14.
    A.K. Jain, Basic theory of magnets, CAS Magnetic Measurement and Alignment (Brookhaven National Laboratory, USA, 1998), pp. 1–21Google Scholar
  15. 15.
    P. Schnizer, Measuring system qualification for LHC arc quadrupole magnets. PhD thesis, TU Graz, 2002Google Scholar
  16. 16.
    P. Schnizer, B. Schnizer, P. Akishin, E. Fischer, Toroidal circular and elliptic multipole expansions within the gap of curved accelerator magnets, 14th International IGTE Symposium, Graz, Institut für Grundlagen und Theorie der Elektrotechnik (Technische Universität Graz, Austria, 2010)Google Scholar
  17. 17.
    P. Schnizer, B. Schnizer, P. Akishin, A. Mierau, E. Fischer, SIS100 dipole magnet optimisation and local toroidal multipoles. IEEE T. Appl. Supercon. 22(3), 4001505–4001505 (2012). JuneCrossRefGoogle Scholar
  18. 18.
    H. Wiedemann, Particle Accelerator Physics (Springer, Berlin, 2007)Google Scholar
  19. 19.
    K. Wille, Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen (Teubner, Wiesbaden, 1992)CrossRefGoogle Scholar
  20. 20.
    A. C. Kabel, Maxwell-Lorentz equations in general Frenet-Serret coordinates, in Proceedings of the 2003 Particle Accelerator Conference, (2003) pp. 2252–2254Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Helmholtz-Zentrum Berlin für Materialien und EnergieBerlinGermany

Personalised recommendations