Skip to main content

Coupled Movements

  • Chapter
  • First Online:
  • 1567 Accesses

Abstract

In Sect. 1.3 we have seen that a reaction diffusion equation is the limit of diffusively coupled diffusion and reaction equations. In other models particles move on straight lines, the direction of the line and the time for a change of direction are governed by random processes, e.g., by choosing from a given distribution or by diffusion on the space of directions. The correlated random walks and the related telegrapher equation is one example. Here we look at other examples where modes of movement in space and reactions are coupled and we try to find limiting equations, usually in the form of diffusion equations. But first we look, for comparison, at invariants and boundary value problems for reaction diffusion equations.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    Huygens principle for three space dimensions says that signals are transported exactly along characteristics. The sound that is produced from a source at position 0 at time 0 can be heard at position x at time t = | x | ∕c, not before and not later. In two dimensions sound is reverberant.

  2. 2.

    The telegraph equation has been derived from Maxwell’s equations by Lord Kelvin, it has been studied by Heaviside, Poincaré, Picard, and many others. These studies were important for the design of transoceanic cables, in particular for the “pupinisation” (to increase of self induction), see [189] for the history and [289] the mathematics.

    Let R, L, C, A be the Ohm resistance, self induction, the capacity, and leakage, per unit of length, of a transmission line of two parallel wires. The voltage v and the cross current satisfy v x + Li t + Ri = 0, i x + Cv t + Av = 0. Eliminating i leads to \(v_{tt} + \frac{AL+RC} {LC} v_{t} = \frac{1} {LC}v_{xx} -\frac{RA} {LV }v\) and the same equation for i.

  3. 3.

    Cattaneo’s idea is used frequently in physics where wave-like heat transfer (second sound) is modeled (see [153]) or whenever one wants to avoid the effects of infinitely fast propagation, see an application to thermoelasticity [73] and the references therein.

  4. 4.

    In physics transport equations occur in the form of Boltzmann equations. Then instead of a linear turning operator there is a quadratic nonlinearity which describes collisions of particles which between collisions move with constant velocity. Standard references on the Boltzmann equation are the monographs [42, 43]. Equations of the form (7.95) arise from linearizing the Boltzmann equation.

  5. 5.

    Here we integrate over the unit sphere rather than the sphere of radius γ.

References

  1. Alt, W.: Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9(2), 147–177 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berg, H.C., Brown, D.A.: Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. Addendum. In: Antibiotics and Chemotherapy, vol. 19, pp. 55–78. Karger, Basel (1974)

    Google Scholar 

  3. Brayton, R.K., Miranker, W.L.: A stability theory for nonlinear mixed initial boundary value problems. Arch. Ration. Mech. Anal. 17, 358–376 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cattaneo, C.: Sulla conduzione del calore. Atti Semin. Mat. Fis. Univ. di Modena 3, 83–101 (1948)

    MathSciNet  MATH  Google Scholar 

  5. Cercignani, C.: Theory and Application of the Boltzmann Equation. Scottish Academic Press, Edinburgh (1975)

    MATH  Google Scholar 

  6. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  7. Chernov, N., Markarian, R.: Chaotic Billiards. Mathematical Surveys and Monographs, vol. 127. AMS, Providence (2006)

    Google Scholar 

  8. de Vries, G., Hillen, T., Lewis, M., Müller, J., Schönfisch, B.: A Course in Mathematical Biology. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  9. Fernandez Sare, H.D., Racke, R.: On the stability of damped Timoshenko systems: Cattaneo versus Fourier law. Arch. Ration. Mech. Anal. 194(1), 221–251 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fiedler, B., Mallet-Paret, J.: A Poincaré-Bendixson theorem for scalar reaction diffusion equations. Arch. Rational Mech. Anal. 107(4), 325–345 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Flores, K., Hadeler, K.P.: The random walk of Azospirillum brasilense. J. Biol. Dyn. 4, 71–85 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Springer Series in Synergetics, vol. 13, 3rd edn. Springer, Berlin (2004)

    Google Scholar 

  13. Hadeler, K.P.: A transport equation model and diffusion approximation for the walk of whirligig beetles. J. Biol. Dyn. 5(5), 368–375 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hadeler, K.P., Lutscher, F.: Quiescent phases with distributed exit times. Discrete Contin. Dyn. Syst. Ser. B 17(3), 849–869 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hillen, T.: Qualitative analysis of semilinear Cattaneo systems. Math. Models Methods Appl. Sci. 8(3), 507–519 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hillen, T.: M5 mesoscopic and macroscopic models for mesenchymal motion. J. Math. Biol. 53(4), 585–616 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hillen, T.: Existence theory for correlated random walks on bounded domains. Canad. Appl. Math. Q. 18(1), 1–40 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Hillen, T., Leonard, E., van Roessel, H.: Partial Differential Equations; Theory and Completely Solved Problems. Wiley, Hoboken, NJ (2012)

    MATH  Google Scholar 

  19. Holmes, E.E.: Are diffusion models too simple? A comparison with telegraph models of invasion. Am. Nat. 142(5), 779–795 (1993)

    Google Scholar 

  20. Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61(1), 41–73 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jüngel, A.: The boundedness-by-entropy-method for cross-diffusion systems. Nonlinearity 28(6), 1963–2001 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  23. Langevin, P.: Sur la théorie du mouvement brownien. C. R. Acad. Sci. Paris 146, 530–533 (1908)

    MATH  Google Scholar 

  24. Lieberstein, H.M.: Mathematical Physiology. Blood Flow and Electrically Active Cells. Modern Analytic and Computational Methods in Science and Mathematics. American Elsevier, New York (1973)

    MATH  Google Scholar 

  25. Mazzag, B.C., Zhulin, I.B., Mogilner, A.: Model of bacterial band formation in aerotaxis. Biophys. J. 85(6), 3558–3574 (2003)

    Article  Google Scholar 

  26. Othmer, H.G., Dunbar, S.R., Alt, W.: Models of dispersal in biological systems. J. Math. Biol. 26, 263–298 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Painter, K.J., Hillen, T.: Mathematical modelling of glioma growth: the use of diffusion tensor imaging DTI data to predict the anisotropic pathways of cancer invasion. J. Theor. Biol. 323, 25–39 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pearson, K.: The problem of the random walk. Nature 72(1865, 1867), 294, 342 (1905)

    Google Scholar 

  29. Risken, H.: The Fokker-Planck Equation. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  30. Robinson, J.C.: Infinite-Dimensional Dynamical Systems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  31. Schwetlick, H.: Limit sets for multidimensional nonlinear transport equations. J. Differ. Equ. 179, 356–368 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shigesada, N.: Spatial distribution of dispersing animals. J. Math. Biol. 9(1), 85–96 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sinai, Y.G.: On the foundations of the ergodic hypothesis for a dynamical system of statistical mechanics. Dokl. Akad. Nauk SSSR (Russian) 153(6), 1261–1264 (1963). In English, Sov. Math Dokl. 4, 1818–1822 (1963)

    Google Scholar 

  34. Stadje, W.: The exact probability distribution of a two-dimensional random walk. J. Stat. Phys. 46, 207–216 (1987)

    Article  MathSciNet  Google Scholar 

  35. Stadje, W.: Exact probability distributions for noncorrelated random walk models. J. Stat. Phys. 56, 415–435 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Temam, R.: Infinite–Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68. Springer, New York (1988)

    Google Scholar 

  37. Weber, H.: Die partiellen Differentialgleichungen der Mathematischen Physik nach Riemanns Vorlesungen, 5th edn. Vieweg, Braunschweig (1912)

    MATH  Google Scholar 

  38. Xu, Z., Lenaghan, S.C., Reese, B.E., Jia, X., Zhang, M.: Experimental studies and dynamics modeling analysis of the swimming and diving of whirligig beetles (Coleoptera: Gyrinidae). PLOS Comput. Biol. 8(11), e1002792 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hadeler, KP. (2017). Coupled Movements. In: Topics in Mathematical Biology. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-65621-2_7

Download citation

Publish with us

Policies and ethics