Skip to main content

Homogeneous Systems

  • Chapter
  • First Online:
Topics in Mathematical Biology

Abstract

Homogeneous systems play a role in various modeling

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The paper [292] is about this problem with diffusion and nonlinear death rates.

  2. 2.

    The proof in [98] contains some errors.

  3. 3.

    It seems that the full model has been first formulated in [264].

References

  1. Bauer, F.L.: An elementary proof of the Hopf inequality for positive operators. Numer. Math. 7, 331–337 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauer, F.L., Deutsch, E., Stoer, J.: Abschätzungen für die Eigenwerte positiver linearer Operatoren. Linear Algebra Appl. 2, 275–301 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  3. Birkhoff, G.: Extensions of Jentzsch’s Theorem. Trans. Am. Math. Soc. 85, 219–227 (1957)

    MathSciNet  MATH  Google Scholar 

  4. Dietz, K., Hadeler, K.P.: Epidemiological models for sexually transmitted diseases. J. Math. Biol. 26(1), 1–25 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Golubitsky, M., Keeler, E.B., Rothschild, M.: Convergence of the age structure: applications of the projective metric. Theor. Popul. Biol. 7, 84–93 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hadeler, K.P.: Homogeneous systems with a quiescent phase. Math. Model. Nat. Phenom. 3(7), 115–125 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hadeler, K.P., Meinardus, G.: On the roots of Cauchy polynomials. Linear Algebra Appl. 38, 81–102 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hadeler, K.P., Waldstätter, R., Wörz-Busekros, A.: Models for pair formation in bisexual populations. J. Math. Biol. 26(6), 635–649 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hopf, E.: An inequality for positive linear integral operators. J. Math. Mech. 12, 683–692 (1963)

    MathSciNet  MATH  Google Scholar 

  10. Hoppensteadt, F.: Mathematical Theories of Populations: Demographics, Genetics and Epidemics. Regional Conference Series in Applied Mathematics, vol. 20. SIAM, Philadelphia (1975)

    Google Scholar 

  11. Karpelevic, F.I.: On the characteristic roots of matrices with nonnegative elements. Izv. Akad. Nauk SSSR Ser. Mat. 15, 361–383 (1951)

    MathSciNet  Google Scholar 

  12. Keyfitz, N.: The mathematics of sex and marriage. In: Proceedings of the Sixth Berkeley Symposion on Mathematical Statistics and Probability, Vol. IV: Biology and Health, pp. 89–108. University of California Press, Berkeley (1972)

    Google Scholar 

  13. Khalady, M.K., Arino, O.: Estimation of the rate of convergence of semigroups to an asynchronous equilibrium. Semigroup Forum 61, 209–223 (2000)

    Article  MathSciNet  Google Scholar 

  14. Kirkland, S.: An eigenvalue region for Leslie matrices. SIAM J. Matrix Anal. Appl. 13, 507–527 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kostitzin, V.A.: Biologie Mathématique. Armand Colin Collection, Paris (1938)

    MATH  Google Scholar 

  16. Ostrowski, A.M.: Positive matrices and functional analysis. In: Recent Advances in Matrix Theory, pp. 81–101. University of Wisconsin Press, Madison (1964)

    Google Scholar 

  17. Parlett, B.: Can there be a marriage function? In: Greville, T. (ed.) Population Dynamics, pp. 107–135. Academic, New York (1972)

    Chapter  Google Scholar 

  18. Prüss, J., Schappacher, W.: Persistent age-distributions for pair formation models. J. Math. Biol 33(1), 17–33 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Staroverov, O.V.: Reproduction of the structure of the population and marriages. Russian, Ekonomika i matematičeskije metody 13, 72–82 (1977)

    MathSciNet  Google Scholar 

  20. Thieme, H.R.: Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations. Math. Biosci. 111(1), 99–130 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Weinberger, H.F.: The retreat of the less fit allele in a population-controlled model for population genetics. J. Math. Biol. 68(5), 1295–1316 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yellin, J., Samuelson, P.A.: A dynamical model for human population. Proc. Natl. Acad. Sci. USA 71, 2813–2817 (1974)

    Article  MATH  Google Scholar 

  23. Zacher, R.: Persistent solutions for age-dependent pair-formation models. J. Math. Biol. 42(6), 507–531 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hadeler, KP. (2017). Homogeneous Systems. In: Topics in Mathematical Biology. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-65621-2_5

Download citation

Publish with us

Policies and ethics