Skip to main content

Genetic Determinants of Abiotic Stress Tolerance in Foxtail Millet

  • Chapter
  • First Online:
The Foxtail Millet Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Foxtail millet is one of the most important C4 Panicoid crops known for its small genome size (~490 Mb), short life cycle, inbreeding nature, and remarkable abiotic stress tolerance properties. It is a widely-grown food and fodder crop in the dry and semi-arid regions of Asia and Africa, including North China and India. Setaria italica (cultivated) and Setaria viridis (wild) are two widely known species of Setaria genus that serve as excellent model systems for evolutionary, architectural, and physiological studies in related potential bioenergy Panicoid grasses such as switch grass, napier grass, and pearl millet. Foxtail millet is rich in genetic diversity, with several core and mini core collections of its diverse germplasm. There are significant phenotypic variations that provide scope for association mapping and allele mining of new variants of abiotic stress tolerance that could be effectively utilized for crop improvement. Several of the foxtail millet accessions could also be abiotic stress tolerant particularly to drought and salinity, and exploiting their agronomic and stress tolerant traits could be particularly important for marker-assisted selection and genetic engineering. Furthermore, with the release and availability of the foxtail millet genome sequence, several of its distinctive attributes, including abiotic stress tolerance, have been discovered that may help in a better understanding of its evolution, stress physiology, and adaptation. The foxtail millet genome sequence thus not only helps toward identification and introgression of agronomically important traits but also helps in deciphering the abiotic stress tolerance mechanisms of this exceptionally stress tolerant crop and is also useful in developing climate resilient crops which are very crucial in this era of global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amadou I, Amza T, Shi Y-H, Le G-W (2011) Chemical analysis and antioxidant properties of foxtail millet bran extracts. Songklanakarin J Sci Technol 33:509–515

    CAS  Google Scholar 

  • Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants 19:307–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltensperger DD (2002) Progress with proso, pearl, and other millets. In: Janick J, Whipley A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 100–103

    Google Scholar 

  • Barton L, Newsome SD, Chen FH, Wang H, Guilderson TP, Bettinger RL (2009) Agricultural origins and the isotopic identity of domestication in northern China. Proc Natl Acad Sci 106:5523–5528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benabdelmouna A, Darmency H (2003) Copia -like retrotransposons in the genus Setaria: Sequence heterogeneity, species distribution and chromosomal organization. Plant Syst Evol 237:127–136

    Article  CAS  Google Scholar 

  • Benabdelmouna A, Abirached-Darmency M, Darmency H (2001) Phylogenetic and genomic relationships in Setaria italica and its close relatives based on the molecular diversity and chromosomal organization of 5S and 18S-5.8S-25S rDNA genes. Theor Appl Genet 103:668–677

    Article  CAS  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M et al (2012) Reference genome sequence of the model plant Setaria. Nature Biotechnol 30:555–561

    Article  CAS  Google Scholar 

  • Bonthala VS, Muthamilarasan M, Roy R, Prasad M (2014) FmTFDb: a foxtail millet transcription factors database for expediting functional genomics in millets. Mol Biol Rep 41:6343–6348

    Article  CAS  PubMed  Google Scholar 

  • Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49:61–72

    Article  CAS  PubMed  Google Scholar 

  • Brutnell TP, Bennetzen JL, Vogel JP (2015) Brachypodium distachyon and Setaria viridis: model genetic systems for the grasses. Annu Rev Plant Biol 66:465–485

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Chen M, Xu ZS, Li LC, Chen XP, Ma YZ (2014) Characteristics and expression patterns of the aldehyde dehydrogenase (ALDH) gene superfamily of foxtail millet (Setaria italica L.). PLoS One 9(7):e101136

    Google Scholar 

  • Chen J, Qi Y (1993) Recent developments in foxtail millet cultivation and research in China. In: Riley KW, Gupta SC, Seetharam A, Mushonga JN (eds) Advances in small millets. Oxford and IBH Publishing Co, New Delhi, pp 101–107

    Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Tao Y, Zhu C (2013) Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot 64:3077–3086

    Article  CAS  PubMed  Google Scholar 

  • Doust AN, Kellogg EA (2006) Effect of genotype and environment on branching in weedy green millet (Setaria viridis) and domesticated foxtail millet (Setaria italica) (Poaceae). Mol Ecol 15:1335–1349

    Article  CAS  PubMed  Google Scholar 

  • Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doust AN, Mauro-Herrera M, Malahy M, Stromski J, Estep M, Percifield R, Wang H, Wu L, Wu X, Zale J, Devos K, Bennetzen J (2010) Development of genomic and genetic tools for foxtail millet, and use of these tools in the improvement of biomass production for bioenergy crops. In: Plant and animal genomes XVIII conference. 9–13 January, San Diego, CA. P372 (abstract)

    Google Scholar 

  • Dvořáková Z, Čepková PH, Janovská D, Viehmannová I, Svobodová E, Cusimamani EF, Milella L (2015) Comparative analysis of genetic diversity of 8 millet genera revealed by ISSR markers. Emirates J Food Agric 27:617–628

    Article  Google Scholar 

  • Dwivedi S, Upadhyaya H, Senthilvel S, Hash C, Fukunaga K, Diao X, Santra D, Baltensperger D, Prasad M (2012). In: Janick J (ed) Millets: genetic and genomic resources. Plant Breed Rev, vol 35. Wiley, USA, pp 247–375

    Google Scholar 

  • Feng ZJ, He GH, Zheng WJ, Lu PP, Chen M, Gong YM, Ma YZ, Xu ZS (2015) Foxtail millet NF-Y families: genome-wide survey and evolution analyses identified two functional genes important in abiotic stresses. Front Plant Sci 6:1142

    PubMed  PubMed Central  Google Scholar 

  • Feng ZJ, Xu ZS, Sun J, Li LC, Chen M, Yang GX, He GY, Ma YZ (2016) Investigation of the ASR family in foxtail millet and the role of ASR1 in drought/oxidative stress tolerance. Plant Cell Rep 35:115–128

    Article  CAS  PubMed  Google Scholar 

  • Goron TL, Raizada MN (2015) Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution. Front Plant Sci 6:157. doi:10.3389/fpls.2015.00157

    PubMed  PubMed Central  Google Scholar 

  • Gupta S, Kumari K, Das J, Lata C, Puranik S, Prasad M (2011) Development and utilization of novel intron length polymorphic markers in foxtail millet ((L.) P. Beauv.). Genome 54(7):586–602

    Google Scholar 

  • Gupta S, Kumari K, Muthamilarasan M, Parida SK, Prasad M (2014) Population structure and association mapping of yield contributing agronomic traits in foxtail millet. Plant Cell Rep 33:881–893

    Article  CAS  PubMed  Google Scholar 

  • Han J, Xie H, Sun Q, Wang J, Lu M, Wang W, Guo E, Pan J (2014) Bioinformatic identification and experimental validation of miRNAs from foxtail millet (Setaria italica). Gene 546(2):367–377

    Google Scholar 

  • He Z, Bonjean APA (2010) Cereals in China. CIMMYT, Mexico

    Google Scholar 

  • Huang Z, Zhao L, Chen D, Liang M, Liu Z, Shao H et al (2013) Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem Artichoke Plantlets. PLoS ONE 8(4):e62085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang P, Feldman M, Schroder S, Bahri BA, Diao X, Zhi H, Estep M, Baxter I, Devos KM, Kellogg EA (2014) Population genetics of Setaria viridis, a new model system. Mol Ecol 23:4912–4925

    Article  CAS  PubMed  Google Scholar 

  • Jacinto T, Farmer EE, Ryan CA (1993) Purification of potato leaf plasma membrane protein pp34, a protein phosphorylated in response to oligogalacturonide signals for defense and development. Plant Physiol 103:1393–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayaraman A, Puranik S, Rai NK, Vidapu S, Sahu PP, Lata C et al (2008) cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Mol Biotechnol 40:241–251

    Article  CAS  PubMed  Google Scholar 

  • Jia G, Huang X, Zhi H, Zhao Y, Zhao Q, Li W, Chai Y, Yang L, Liu K et al (2013) A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45(8):957–961

    Google Scholar 

  • Khan Y, Yadav A, Bonthala VS, Muthamilarasan M, Yadav CB, Prasad M (2014) Comprehensive genome-wide identification and expression profiling of foxtail millet [Setaria italica (L.)] miRNAs in response to abiotic stress and development of miRNA database. Plant Cell Tiss Org Cult (PCTOC) 118(2):279–292

    Google Scholar 

  • Khraiwesh B, Zhu J-K, Zhu J (2011) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochem Biophys Acta. doi:10.1016/j.bbagrm.2011.05.001

    PubMed  PubMed Central  Google Scholar 

  • Krishnamurthy L, Serraj R, Rai KN, Hash CT, Dakheel AJ (2007) Identification of pearl millet [Pennisetum glaucum (L.) R. Br.] lines tolerant to soil salinity. Euphytica 158(1–2):179–188

    Google Scholar 

  • Kumari K, Muthamilarasan M, Misra G, Gupta S, Subramanian A, Parida SK, Chattopadhyay D, Prasad M, Jordan IK (2013) Development of eSSR-Markers in Setaria italica and their applicability in studying genetic diversity, cross-transferability and comparative mapping in millet and non-millet Species. PLoS ONE 8(6):e67742

    Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 14:4731–4748

    Article  Google Scholar 

  • Lata C, Prasad M (2013a) Setaria genome sequencing: an overview. J Plant Biochem Biotechnol 22:257–260

    Article  CAS  Google Scholar 

  • Lata C, Prasad M (2013b) Validation of an allele-specific marker associated with dehydration stress tolerance in a core set of foxtail millet accessions. Plant Breed 132:496–499

    CAS  Google Scholar 

  • Lata C, Prasad M (2014) Association of an allele-specifi c marker with dehydration stress tolerance in foxtail millet suggests SiDREB2 to be an important QTL. J Plant Biochem Biotechnol 23:119–122

    Article  CAS  Google Scholar 

  • Lata C, Sahu PP, Prasad M (2010) Comparative transcriptome analysis of differentially expressed genes in foxtail millet (Setaria italica L.) during dehydration stress. Biochem Biophys Res Commun 393:720–727

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Bhutty S, Bahadur RP, Majee M, Prasad M (2011a) Association of an SNP in a novel DREB2-like gene SiDREB2 with stress tolerance in foxtail millet [Setaria italica (L.)]. J Exp Bot 62:3387–3401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lata C, Jha S, Dixit V, Sreenivasulu N, Prasad M (2011b) Differential antioxidative responses to dehydration-induced oxidative stress in core set of foxtail millet cultivars [Setaria italica (L.)]. Protoplasma 248:817–828

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Gupta S, Prasad M (2013) Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol 33:328–343

    Article  PubMed  Google Scholar 

  • Lata C, Mishra AK, Muthamilarasan M, Bonthala VS, Khan Y, Prasad M (2014) Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L.). PLoS ONE 9:e113092

    Article  PubMed  PubMed Central  Google Scholar 

  • Layton DJ, Kellogg EA (2014) Morphological, phylogenetic, and ecological diversity of the new model species Setaria viridis (Poaceae: Paniaceae) and its close relatives. Am J Bot 101:539–557

    Article  PubMed  Google Scholar 

  • Li Y-M (1991) A study on the identification of drought-resistance on millet germplasm (in Chinese. English abstract). Acta Agril Boreali-Sinica 6:20–25

    Google Scholar 

  • Li Y-M (1997) Breeding for foxtail millet drought tolerant cultivars (in Chinese). In: Li Y (ed) Foxtail millet breeding. Chinese Agr Press, Beijing, pp 421–446

    Google Scholar 

  • Li P, Brutnell TP (2011) Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. J Exp Bot 62:3031–3037

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wu SZ (1996) Traditional maintenance and multiplication of foxtail millet (Setaria italica (L) P. Beauv.) landraces in China. Euphytica 87:33–38

    Article  Google Scholar 

  • Li C, Yue J, Wu X, Xu C, Yu J (2014) An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress. J Exp Bot 65:5415–5427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Dong Y, Li C, Pan Y, Yu J (2017) SiASR4, the target gene of SiARDP from Setaria italica, improves abiotic stress adaption in plants. Front Plant Sci 7:2053

    PubMed  PubMed Central  Google Scholar 

  • Liang S, Yang G, Ma Y (2010) Chemical characteristics and fatty acid profile of foxtail millet bran oil. J Am Oil Chem Soc 87:63–67

    Article  CAS  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzaee MR, Zare R, Nasrabad AA (2010) A new leaf and sheath brown spot of foxtail millet caused by Bipolaris australiensis. Australasian Plant Disease Notes 5:19–20

    Article  Google Scholar 

  • Mishra AK, Puranik S, Bahadur RP, Prasad M (2012) The DNA binding activity of an AP2 protein is involved in transcriptional regulation of a stress-responsive gene, SiWD40, in foxtail millet. Genomics. doi:10.1016/j.ygeno.2012.06.012

    PubMed Central  Google Scholar 

  • Munirathnam P, Venkatramanamma K, Anusha A (2015) valuation of foxtail millet genotype s for blast and rust diseases under field conditions. Current Biotica 9:263–268

    Google Scholar 

  • Muthamilarasan M, Prasad M (2015) Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theor Appl Genet 128:1–14

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Venkata Suresh B, Pandey G, Kumari K, Parida SK, Prasad M (2013) Development of 5123 intron-length polymorphic markers for large-scale genotyping applications in foxtail millet. DNA Res 21:41–52

    Article  PubMed  PubMed Central  Google Scholar 

  • Muthamilarasan M, Bonthala VS, Mishra AK, Khandelwal R, Khan Y, Roy R, Prasad M (2014a) C2H2-type of zinc finger transcription factors in foxtail millet define response to abiotic stresses. Funct Integr Genomics 14:531–543

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Khandelwal R, Yadav CB, Bonthala VS, Khan Y, Prasad M (2014b) Identification and molecular characterization of MYB transcription factor superfamily in C4 model plant foxtail millet (Setaria italica L.). PLoS ONE 9:e109920

    Article  PubMed  PubMed Central  Google Scholar 

  • Muthamilarasan M, Bonthala VS, Khandelwal R, Jaishankar J, Shweta S, Nawaz K, Prasad M (2015) Global analysis of WRKY transcription factor superfamily in Setaria identifies potential candidates involved in abiotic stress signaling. Front Plant Sci 6:910

    PubMed  PubMed Central  Google Scholar 

  • Nakayama H, Nagamine T, Hayashi N (2005) Genetic variation of blast resistance in foxtail millet (Setaria italica (L.) P. Beauv.) and its geographic distribution. Genet Resour Crop Evol 52:863–868

    Article  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Pan Y, Li J, Jiao L, Li C, Zhu D, Yu J (2016) A Non-specific Setaria italica lipid transfer protein gene plays a critical role under abiotic stress. Front Plant Sci 7

    Google Scholar 

  • Pandey G, Misra G, Kumari K, Gupta S, Parida SK, Chattopadhyay D, Prasad M (2013) Genome-wide development and use of microsatellite markers for large-scale genotyping applications in foxtail millet [Setaria italica (L.)]. DNA Res 20:197–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey G, Yadav CB, Sahu PP, Muthamilarasan M, Prasad M (2017) Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (Setaria italica L.). Plant Cell Rep 36:759–772

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu SC, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding Genetic Loci. Science 269(5231):1714–1718

    Google Scholar 

  • Peng Y, Zhang J, Cao G, Xie Y, Liu X, Lu M et al (2010) Overexpression of a PLDalpha1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance. Plant Cell Rep 29:793–802

    Article  CAS  PubMed  Google Scholar 

  • Puranik S, Jha S, Srivastava PS, Sreenivasulu N, Prasad M (2011a) Comparative transcriptome analysis of contrasting foxtail millet cultivars in response to short-term salinity stress. J Plant Physiol 168:280–287

    Article  CAS  PubMed  Google Scholar 

  • Puranik S, Bahadur RP, Srivastava PS, Prasad M (2011b) Molecular cloning and characterization of a membrane associated NAC family gene, SiNAC from foxtail millet [Setaria italica (L.) P. Beauv.]. Mol Biotechnol doi:10.1007/s12033-011-9385-7

  • Puranik S, Sahu PP, Mandal SN, Venkata Suresh B, Parida SK, Prasad M (2013) Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.). PLoS ONE 8:e64594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi X, Xie S, Liu Y, Yi F, Yu J (2013) Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing. Plant Molec Biol 83(4-5):459–473

    Google Scholar 

  • Qie L, Jia G, Zhang W, Schnable J, Shang Z, Li W, Liu B, Li M, Chai Y, Zhi H, Diao X (2014) Mapping of quantitative trait locus (QTLs) that contribute to germination and early seedling drought tolerance in the interspecific cross Setaria italica×Setaria viridis. PLoS One 9(7):e101868. doi: 10.1371/journal.pone.0101868

  • Rajwanshi R, Chakraborty S, Jayanandi K, Deb B, Lightfoot DA (2014) Orthologous plant microRNAs: microregulators with great potential for improving stress tolerance in plants. Theor Appl Genet 127:2525–2543

    Article  CAS  PubMed  Google Scholar 

  • Shantz HL, Piemeisel LN (1927) The water requirement of plants at Akron Colorado. J Agri Res. 34:1093–1189

    Google Scholar 

  • Sharma R, Girish AG, Upadhyaya HD, Humayun P, Babu TK, Rao VP, Thakur RP (2014) Identification of blast resistance in a core collection of foxtail millet germplasm. Plant Dis 98:519–524

    Article  Google Scholar 

  • Shibuya K, Fukushima S, Takatsuji H (2009) RNA-directed DNA methylation induces transcriptional activation in plants. Proc Natl Acad Sci USA 106:1660–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siles M, Baltensperger DD, Nelson LA, Marcon A, Frickel GE (2001) Registration of five genetic marker stocks for foxtail millet. Crop Sci 41:2011–2012

    Article  Google Scholar 

  • Singh RK, Jaishankar J, Muthamilarasan M, Shweta S, Dangi A, Prasad M (2016) Genome-wide analysis of heat shock proteins in C4 model, foxtail millet identifies potential candidates for crop improvement under abiotic stress. Sci Rep 6:32641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreenivasulu N, Ramanjulu S, Ramachandra-Kini K, Prakash HS, Shekar-Shetty H, Savithri HS, Sudhakar C (1999) Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance. Plant Sci 141:1–9

    Article  CAS  Google Scholar 

  • Sreenivasulu N, Miranda M, Prakash HS, Wobus U, Weschke W (2004) Transcriptome changes in foxtail millet genotypes at high salinity: identification and characterization of a PHGPX gene specifically upregulated by NaCl in a salt-tolerant line. J Plant Physiol 161:467–477

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R (2010) MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol 21:805–811

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 2008(8):25

    Article  Google Scholar 

  • Tadele Z (2016) Drought adaptation in millets. In: Shanker AK, Shanker C (eds) Abiotic and biotic stress in plants—recent advances and future perspectives. ISBN 978-953-51-2250-0. http://dx.doi.org/10.5772/61929

  • Tian BH, Wang J, Zhang L, Li Y, Wang S, Li H (2010) Assessment of resistance to lodging of landrace and improved cultivars in foxtail millet. Euphytica 172:295–302

    Article  Google Scholar 

  • Tian BH, Liu Y, Zhang LX, Song SX (2015) Characterization of culm morphology, anatomy and chemical composition of foxtail millet cultivars differing in lodging resistance. J Agril Sci 153:1437–1448. doi:10.1017/S0021859614001105

    Article  CAS  Google Scholar 

  • Veeranagamallaiah G, Chandraobulreddy P, Jyothsnakumari G, Sudhakar C (2007) Glutamine synthetase expression and pyrroline-5-carboxylate reductase activity influence proline accumulation in two cultivars of foxtail millet (Setaria italica L.) with differential salt sensitivity. Environ Expt Bot 60:239–244

    Article  CAS  Google Scholar 

  • Veeranagamallaiah G, Jyothsnakumari G, Thippeswamy M, Reddy PCO, Surabhi G-K, Sriranganayakulu G, Mahesh Y, Rajasekhar B, Madhurarekha C, Sudhakar C (2008) Proteomic analyses of salt responses in foxtail millet (Setaria italica L. cv. Prasad) seedlings. Plant Sci 175:631–641

    Article  CAS  Google Scholar 

  • Veeranagamallaiah G, Ranganayakulu GS, Thippeswamy M, Sivakumar M, Reddy EK, Pandurangaiah M, Sridevi V, Sudhakar C (2009) Aldose reductase expression contributes in sorbitol accumulation and 4-hydroxynon-2-enal detoxification in two foxtail millet (Setaria italica L.) cultivars with different salt stress tolerance. Plant Growth Regul 59:137–143

    Article  CAS  Google Scholar 

  • Wang RL, Wendel JF, Dekker JH (1995) Weedy adaptation in Setaria spp. I. Isozyme analysis of genetic diversity and population genetic structure in Setaria viridis. Am J Bot 82:308–317

    Article  Google Scholar 

  • Wang Y, Zhang J, Cui R, Li W, Zhi H, Li H, Diao X (2009) Transformation of wheat with DNAj gene from foxtail millet via pollen-tube pathway (in Chinese with English abstract) Acta Agril Boreali-Sinica 2009-02. (http://en.cnki.com.cn/Article_en/CJFDTOTALHBNB200902005.htm)

  • Wang C, Chen J, Zhi H, Yang L, Li W, Wang Y, Li H, Zhao B, Chen M, Diao X (2010) Population genetics of foxtail millet and its wild ancestor. BMC Genet 11:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Li P, Li C, Pan Y, Jiang X, Zhu D, Zhao Q, Yu J (2014a) SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biol 14:290

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu H, Xin Q (2014b) Genome-wide analysis and identification of cytokinin oxidase/dehydrogenase (CKX) gene family in foxtail millet (Setaria italica). Crop J 2:244–254

    Article  Google Scholar 

  • Wang Y, Li L, Tang S, Liu J, Zhang H, Zhi H, Jia G, Diao X (2016) Combined small RNA and degradome sequencing to identify miRNAs and their targets in response to drought in foxtail millet. BMC Genet 17:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen Q-F, Wang L, Wang XY (2005) The foxtail millet germplasm resources and screening and utilization of drought resistance germplasm in Shanxi (In Chinese with English abstract). J Shanxi Agr Sci 33:32–33

    Google Scholar 

  • Yadav CB, Muthamilarasan M, Pandey G, Khan Y, Prasad M (2014) Development of novel microRNA-based genetic markers in foxtail millet for genotyping applications in related grass species. Mol Breed. doi:10.1007/s11032-014-0137-9

    Google Scholar 

  • Yadav CB, Bonthala VS, Muthamilarasan M, Pandey G, Khan Y, Prasad M (2015) Genome-wide development of transposable elements-based markers in foxtail millet and construction of an integrated database. DNA Res 22:79–90

    Article  CAS  PubMed  Google Scholar 

  • Yadav A, Khan Y, Prasad M (2016) Dehydration-responsive miRNAs in foxtail millet: genome-wide identification, characterization and expression profiling. Planta 243:749–766

    Article  CAS  PubMed  Google Scholar 

  • Yi F, Xie S, Liu Y, Qi X, Yu J (2013) Genome-wide characterization of microRNA in foxtail millet (Setaria italica). BMC Plant Biol 13(1):212

    Google Scholar 

  • Yue J, Li C, Liu Y, Yu J (2014) A remorin gene SiREM6, the target gene of SiARDP, from foxtail millet (Setaria italica) promotes high salt tolerance in transgenic Arabidopsis. PLoS ONE 9(6):e100772

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang JP, Wang MY, Bai YF, Jia JP, Wang GY (2005) Rapid evaluation on drought tolerance of foxtail millet at seedling stage (in Chinese. English abstract). J Plant Genet Resour 6:59–62

    CAS  Google Scholar 

  • Zhang C, Zhang H, Li JX (2007a) Advances of millet research on nutrition and application. J Chinese Cereals Oils Assoc 22:51–55

    Google Scholar 

  • Zhang J, Liu T, Fu J, Zhu Y, Jia J, Zheng J, Zhao Y, Zhang Y, Wang G (2007b) Construction and application of EST library from Setaria italica in response to dehydration stress. Genomics 90:121–131

    Article  CAS  PubMed  Google Scholar 

  • Zhang JP, Liu TS, Zheng J, Jin Z, Zhu Y, Guo JF, Wang GY (2007c) Cloning and characterization of a putative 12-oxophytodienoic acid reductase cDNA induced by osmotic stress in roots of foxtail millet. DNA Seq 18:138–144

    Article  PubMed  Google Scholar 

  • Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M et al (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnol 30:549–554

    Article  CAS  Google Scholar 

  • Zhang S, Tang C, Zhao Q, Li J, Yang L, Qie L, Fan X et al (2014) Development of highly polymorphic simple sequence repeat markers using genome-wide microsatellite variant analysis in Foxtail millet [Setaria italica (L.) P. Beauv]. BMC Genom 15:78

    Article  CAS  Google Scholar 

  • Zhang L, Liu B, Zheng G, Zhang A, Li R (2017) Genome-wide characterization of the SiDof gene family in foxtail millet (Setaria italica). Biosystems 151:27–33

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Zhao Q, Ao G, Yu J (2009) The foxtail millet Si69 gene is a Wali7 (wheat aluminium-induced protein 7) homologue and may function in aluminium tolerance. Chinese Sci Bullet 54:1697–1706

    CAS  Google Scholar 

  • Zhi H, Diao X, Lu P, Li W, Akolova Z (2004) Methodology analysis on screening of salt tolerant genotypes from foxtail millet and other Setaria species. J Hebei Agr Res 8:15–18

    Google Scholar 

  • Zhou X, Wang G, Zhang W (2007) UV-B responsive microRNA genes in Arabidopsis thaliana. Mol Syst Biol 3:103

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Wang G, Sutoh K, Zhu JK, Zhang W (2008) Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochim Biophys Acta 1779:780–788

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168

    Article  CAS  PubMed  Google Scholar 

  • Zhu X-H, Song Y-C, Zhao Z-H, Shi Y-S, Liu Y-H, Li Y, Wang T-Y (2008) Methods for identification of drought tolerance at germination period of foxtail millet by osmotic stress (in Chinese, English abstract). J Plant Genet Resour 9:62–67

    CAS  Google Scholar 

Download references

Acknowledgements

Charu Lata acknowledges INSPIRE Faculty Award [IFA-11LSPA-01] from Department of Science & Technology (DST), GoI, New Delhi. She is also thankful to the Director, CSIR-National Botanical Research Institute, Lucknow, India for providing facilities and support to conduct research in millet genomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charu Lata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Charu Lata, Radha Shivhare (2017). Genetic Determinants of Abiotic Stress Tolerance in Foxtail Millet. In: Prasad, M. (eds) The Foxtail Millet Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-65617-5_8

Download citation

Publish with us

Policies and ethics