Skip to main content

Nutrition Potential of Foxtail Millet in Comparison to Other Millets and Major Cereals

  • Chapter
  • First Online:
The Foxtail Millet Genome

Abstract

Global population is burgeoning at an alarming rate and is expected to reach 9.7 billion by 2050 and 11.2 billion by the end of this century. This has led to immense pressure on global agriculture, compounded by dwindling productivity of the existing systems and acreage because of climate change, resulting in ever-increasing input costs for the cultivation of most resource-intensive cereal crops such as rice, wheat, and maize. Ironically, the most affected populations are those with least resources to mitigate the problem—those belonging to Asian and Sub-Saharan Africa. It is against this backdrop that there is an ever-increasing need for adopting cereal crops that are easy to cultivate, less resource hungry, climate resilient, and importantly, that meet the major nutritional requirement of the feeding population. Foxtail millet is a perfect cereal crop in this light and stands to help significantly global endeavors toward food security and nutrition. The present chapter provides a comparative nutritional assessment of foxtail millet with other cereal crops, summarizes the major scientific approaches currently being undertaken for its biofortification and highlights potential avenues of crop improvement using conventional breeding, genomics, and other interdisciplinary “omic” tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahman A, Hoseney RC, Varriano-Marston E (1984) The proportions and chemical compositions of hand-dissected anatomical parts of pearl millet. J Cereal Sci 2:127–133

    Article  CAS  Google Scholar 

  • Anuradha K et al (2012) Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar×Swarna RILs. Gene 508:233–240

    Article  CAS  PubMed  Google Scholar 

  • Austin DF (2006) Foxtail millets (Setaria: Poaceae) abandoned food in two hemispheres. Econ Bot 60:143–158

    Article  Google Scholar 

  • Baldet P, Alban C, Douce R (1997) Biotin synthesis in higher plants: purification and characterization of bioB gene product equivalent from Arabidopsis thaliana overexpressed in Escherichia coli  and its subcellular localization in pea leaf cells. FEBS Lett 419:206–210

    Article  CAS  PubMed  Google Scholar 

  • Bangoura ML et al (2012) Starch functional properties and resistant starch from foxtail millet [Setaria italica (L.) P. Beauv] species. Pak J Nut 11:821–830

    CAS  Google Scholar 

  • Becker R, Lorenz K (1978) Saccharides in proso and foxtail millets. J Food Sci 43:1412–1414

    Article  CAS  Google Scholar 

  • Belanger FC, Leustek T, Chu B, Kriz AL (1995) Evidence for the thiamine biosynthetic pathway in higher-plant plastids and its developmental regulation. Plant Mol Biol 29:809–821

    Article  CAS  PubMed  Google Scholar 

  • Bergamini N et al (2013) Minor millets in India: a neglected crop goes mainstream. In: Fanzo J, Hunter D, Borelli T, Mattei F (eds) Diversifying food and diets: using agricultural biodiversity to improve nutrition and health. Bioversity International, Rome, pp 313–325

    Google Scholar 

  • Black RE et al (2013) Maternal and child nutrition study group: maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382:427–451

    Article  PubMed  Google Scholar 

  • Blessin CW, VanEtten CH, Wiebe R (1958) Carotenoid content of the grain from yellow endosperm-type sorghums. Cereal Chem 35:359–365

    Google Scholar 

  • Chandel G, Meena RK, Dubey M, Kumar M (2014) Nutritional properties of minor millets: neglected cereals with potentials to combat malnutrition. Curr Sci 107:1109–1111

    Google Scholar 

  • Conklin PL, Pallanca, Last RL, Smirnoff N (1997) L-Ascorbic acid metabolism in the ascorbate- deficient arabidopsis mutant vtc1. Plant Physiol 115:1277–1285

    Google Scholar 

  • Crespo-Herrera LA, Velu G, Singh RP (2016) Quantitative trait loci mapping reveals pleiotropic effect for grain iron and zinc concentrations in wheat. Ann Appl Biol 169:27–35

    Article  CAS  Google Scholar 

  • Deatherage WL, McMasters MM, Rist CE (1955) A partial survey of amylose content in starch from domestic and foreign varieties of corn, wheat and sorghum and from some other starch-bearing plants. Trans Am Assoc Cereal Chem 13:31–42

    Google Scholar 

  • Deaton A, Dreze J (2009) Food and nutrition in India: facts and interpretations. Available at: http://www.princeton.edu/deaton/downloads/FoodandNutritioninIndiaFactsandInterpretations.pdf

  • Della Penna D (1999) Nutritional genomics: manipulating plant micronutrients to improve human health. Science 285:375–379

    Article  CAS  Google Scholar 

  • Doust AN et al (2004) Genetic control of branching in foxtail millet. Proc Natl Aced Sci U S A 101:9045–9050

    Article  CAS  Google Scholar 

  • Dwivedi S et al (2011) Millets: genetic and genomic resources. In: Janick J (ed) Plant Breed Rev 35, Wiley, New Jersey, pp 247–375

    Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93:5624–5628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46:S33–S50

    PubMed  Google Scholar 

  • Fang X et al (2016) A high density genetic map and QTL for agronomic and yield traits in Foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Genom 17:336

    Article  Google Scholar 

  • FAO (1995) Sorghum and millets in human nutrition. Rome, Italy. http://www.fao.org/docrep/T0818e/T0818E00.htm

  • Fincher GB (1989) Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu Rev Plant Physiol Plant Mol Biol 40:305–346

    Article  CAS  Google Scholar 

  • Frey KJ (1977) Proteins of oats. Z Pflanzenzucht 78:185–215

    CAS  Google Scholar 

  • Ghosal A, Krishna O (1995) Millets of India. Navdanya Publishers, New Delhi

    Google Scholar 

  • Grusak MA, Pearson JN, Marentes (1999) The physiology of micronutrient homeostasis in field crops. Field Crops Res 60:41–56

    Google Scholar 

  • Hecht SS (1999) Chemoprevention in cancer by isothiocyanates, modifiers of carcinogen metabolism. J Nutr 129:768–774

    Google Scholar 

  • Hegde PS, Rajasekaran NS, Chandra TS (2005) Effects of the antioxidant properties of millet species on oxidative stress and glycemic status in alloxan induced rats. Nutr Res 25:1109–1120

    Article  CAS  Google Scholar 

  • Higgins JA (2004) Resistant starch: metabolic effects and potential health benefits. J AOAC Int 87:761–768

    CAS  PubMed  Google Scholar 

  • Hirschi KD (2009) Nutrient biofortification of food crops. Ann Rev Nutr 29:401–421

    Article  CAS  Google Scholar 

  • Huang X et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–969

    Article  CAS  PubMed  Google Scholar 

  • Hubbard JE, Hall HH, Earle FR (1950) Composition of the component parts of the sorghum kernel. Cereal Chem 27:414–421

    Google Scholar 

  • Hulse JH, Laing EM, Pearson OE (1980) Sorghum and the millets: their composition and nutritive value. Academic Press, New York

    Google Scholar 

  • Ishikawa S et al (2010) A quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on short arm of chromosome 7. J Exp Bot 613:923–934

    Article  Google Scholar 

  • Jaiswal V et al (2016) Genome wide single locus single trait, multi-locus and multi-trait association mapping for some important agronomic traits in common wheat (T. aestivum L.). PLoS ONE 11:e0159343

    Article  PubMed  PubMed Central  Google Scholar 

  • Jambunathan R, Subramanian V (1988) Grain quality and utilization of sorghum and pearl millet. In: Proceedings of the international biotechnology workshop in biotechnology in tropical crop improvement, Patancheru, Inde, 12–15 Janvier 1987, p 133–139

    Google Scholar 

  • Jambunathan R, Singh U, Subramanian V (1984) Grain quality of sorghum, pearl millet, pigeonpea and chickpea. In Achaya KT (ed) Proceedings of a workshop in interfaces between agriculture nutrition and food science, Patancheru, Inde, 10–12 Nov 1981, Université des Nations Unies, Tokyo, Japan, p 4760

    Google Scholar 

  • James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222

    Article  CAS  PubMed  Google Scholar 

  • Jayachandran S, Pande R (2013) Why are Indian children shorter than African children? Available at: http://www.hks.harvard.edu/fs/rpande/papers/ Indianchildrenheight.pdf

  • Jia YH et al (2014) Molecular diversity and association analysis of drought and salt tolerance in Gossypium hirsutum L. germplasm. J Integr Agric 13:1845–1853

    Article  CAS  Google Scholar 

  • Kotla A, et al. (2015) Genome-wide association analysis for Fe and Zn concentration in sorghum grains identifies the potential candidate genes for sorghum biofortification. PAG XXIII, San Diego CA, 10–14 January 2015

    Google Scholar 

  • Krishnappa M (2009) Breeding potential of selected crosses for genetic improvement of finger millet. SAT eJ 7:1–6

    Google Scholar 

  • Kumar S et al (2016) Mapping quantitative trait loci controlling high iron and zinc content in self and open pollinated grains of pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci 7:1636

    PubMed  PubMed Central  Google Scholar 

  • Kurzer MS, Xu X (1997) Dietary phytoestrogens. Ann Rev Nutr 17:353–381

    Google Scholar 

  • Lachance PA (1998) Overview of key nutrients: micronutrient aspects. Nutr Rev 56:S34–S39

    Article  CAS  PubMed  Google Scholar 

  • Lata C, Gupta S, Prasad M (2013) Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotechnol 33:328–343

    Article  PubMed  Google Scholar 

  • Mal B, Padulosi S, Ravi SB (2010) Minor millets in South Asia: learning from IFAD-NUS Project in India and Nepal. Biodiversity Intl, Maccarese, Rome, Italy and M.S. Swaminathan Research Foundation, Chennai, India, pp 1–185

    Google Scholar 

  • Monteiro PV, Virupaksha TK, Rajagopol Rao D (1982) Proteins of Italian millet: amino acid composition, solubility fractionation and electrophoresis of protein fractions. J Sci Food Agric 33:1072–1079

    Article  CAS  PubMed  Google Scholar 

  • Murty DS et al (1985) Soluble sugars in five endosperm types of sorghum. Cereal Chem 62:150–152

    CAS  Google Scholar 

  • Muthamilarasan M, Prasad M (2015) Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theor Appl Genet 128:1–14

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Dhaka A, Yadav R, Prasad M (2016) Exploration of millet models for developing nutrient rich graminaceous crops. Plant Sci 242:89–97

    Article  CAS  PubMed  Google Scholar 

  • Norris SR, Barrette TR, DellaPenna D (1995) Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell 7:2139–2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norris SR, Shen X, DellaPenna D (1998) Complementation of the Arabidopsis pds1 mutation with the gene encoding p-hydroxyphenylpyruvate dioxygenase. Plant Physiol 117:1317–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parameswaran K, Sadasivam S (1994) Changes in the carbohydrates and nitrogenous components during germination of proso millet (Panicum miliaceum). Plant Foods Hum Nutr 45:97–102

    Article  CAS  PubMed  Google Scholar 

  • Peleg Z et al (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat×wild emmer wheat RIL population. Theor Appl Genet 119:353–369

    Article  CAS  PubMed  Google Scholar 

  • Pogson B, McDonald KA, Truong M, Britton G, DellaPenna D (1996) Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell 8:1627–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pu ZE et al (2013) Quantitative trait loci associated with micronutrient concentrations in two recombinant inbred wheat lines. J Integ Agri Adv 13:2322–2329

    Article  Google Scholar 

  • Qie L et al (2014) Mapping of quantitative trait locus (QTLs) that contribute to germination and early seedling drought tolerance in the interspecific cross Setaria italic×Setaria viridis. PLoS ONE 9:e101868

    Article  PubMed  PubMed Central  Google Scholar 

  • Ring SH, Akingbala JO, Rooney LW (1982) Variation in amylose content among sorghums. In: Rooney LW, Murty DS (eds) Proceedings of the international symposium on sorghum grain quality, Hyderabad, India, 28–31 Oct 1981, pp 269–279

    Google Scholar 

  • Rooney LW, Serna-Saldivar S (1991) Sorghum. In: Lorenz KJ, Kulp K (eds) Handbook of cereal science and technology. Marcel Dekker, New York, pp 233–269

    Google Scholar 

  • Saleh ASM, Zhang Q, Chen J, Shen Q (2013) Millet grains: nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Saf 12:281–295

    Article  CAS  Google Scholar 

  • Sawhney SK, Naik MS (1969) Amino acid composition of protein fractions of pearl millet and the effect of nitrogen fertilization on its proteins. Indian J Genet Plant Breed 29:395–406

    Google Scholar 

  • Schonhof I, Krumbein A (1996) Gehalt an wertgebenden Inhaltstoffen verschiedener Brokkolitypen (Brassicaoleracea var italica Plenck). Gartenbauwissenschaft 61:281–288

    CAS  Google Scholar 

  • Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Ausubel FM, Goodman HM (1995) Analysis of Arabidopsi mutants deficient in flavonoid biosynthesis. Plant J 8:659–671

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Axtell JD (1973) Survey of world sorghum collection for opaque and sugary lines. In: Inheritance and improvement of protein quality and content in sorghum, No. 10 Research Progress Report No. 10, pp l–18. Lafayette, Indiana, Etats-Unis, Department of Agronomy, Agricultural Experiment Station Purdue University; Washington DC, Etats-Unis, Agence pour le développement international

    Google Scholar 

  • Singh P, Raghuvanshi RS (2012) Finger millet for food and nutrition security. Afr J Food Sci 6:77–84

    CAS  Google Scholar 

  • Sridhar R, Lakshminarayana G (1992) Lipid class contents and fatty acid composition of small millets: little (Panicum sumatrense), kodo (Paspalum scrobiculatum), and barnyard (Echinochloa colona). J Agric Food Chem 40:2131–2134

    Article  CAS  Google Scholar 

  • Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A, Holmberg A, Amini B, Bhalerao R, Larsson M, Villarroel R et al (1998) Gene discovery in the wood-forming tissues of poplar: analysis of 5,692 expressed sequence tags. Proc Natl Acad Sci U S A 95:13330–13335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su J et al (2016) Detection of favorable QTL alleles and candidate genes for lint percentage by GWAS in Chinese upland cotton. Front Plant Sci 7:1576

    PubMed  PubMed Central  Google Scholar 

  • Subramanian V, Jambunathan R (1980) Traditional methods of processing of sorghum (Sorghum bicolor) and pearl millet (Pennisetum americanum) grains in India. Rep Intl Assoc Cer Chem 10:115–118

    Google Scholar 

  • Subramanian V, Jambunathan R, Suryaprakash S (1980) Note on the soluble sugars of sorghum. Cereal Chem 57:440–441

    CAS  Google Scholar 

  • Subramanian V, Jambunathan R, Suryaprakash S (1981) Sugars of pearl millet [Pennisetum americanum (L.) Leeke] grains. J Food Sci 46:1614–1615

    Article  CAS  Google Scholar 

  • Undernutrition contributes to half of all deaths in children under 5 and is widespread in Asia and Africa. UNICEF Data: monitoring the situation of children and women. Available at: http://data.unicef.org/nutrition/malnutrition. Accessed on 01 Apr 15

  • Utsumi S (1992) Plant food protein engineering. Adv Food Nutr Res 36:89–208

    Article  CAS  PubMed  Google Scholar 

  • Virupaksha TK, Ramachandra G, Nagaraju D (1975) Seed proteins of finger millet and their amino acid composition. J Sci Food Agric 26:1237–1246

    Article  CAS  Google Scholar 

  • Wang M, Goldman IL (1996) Phenotypic variation in free folic acid content among F1 hybrids and open-pollinated cultivars of red beet. J Am Soc Hort Sci 121:1040–1042

    CAS  Google Scholar 

  • Wankhede DB, Shehnaj A, Raghavendra Rao MR (1979) Carbohydrate composition of finger millet (Eleusine coracana) and foxtail millet (Setaria italica). Qual Plant Foods Hum Nutr 28:293–303

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    Article  PubMed  Google Scholar 

  • Xu YF et al (2012) Molecular mapping of QTLs for grain zinc, iron and protein concentration of wheat across two environments. Field Crops Res 138:57–62

    Article  Google Scholar 

  • Yamamoto K, Sasaki T (1997) Large-scale EST sequencing in rice. Plant Mol Biol 35:135–144

    Article  CAS  PubMed  Google Scholar 

  • Zhang X (2011) Identification of quantitative trait loci for Cd and Zn concentrations of brown rice grown in Cd-polluted soils. Euphytica 180:173–179

    Article  CAS  Google Scholar 

  • Zhang M et al (2014) Mapping and validation of quantitative trait loci associated with concentration of 16 elements in un milled rice grain. Theor Appl Genet 127:137–165

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, McGrath SP (2009) Biofortification and phytoremediation. Curr Opin Plant Biol 12:373–380

    Article  CAS  PubMed  Google Scholar 

  • Zhi-en P et al (2014) Quantitative trait loci associated with micronutrient concentrations in two recombinant inbred wheat lines. J Integ Agri 13:2322–2329

    Article  Google Scholar 

Download references

Acknowledgements

Studies on millet genomics in Dr. Manoj Prasad’s laboratory are supported by Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India [Grant No. EMR/2015/000464], by Department of Biotechnology, Govt. of India [Grant No. BT/HRD/NBA/37/01/2014], and by Core Grant of National Institute of Plant Genome Research (NIPGR), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bandyopadhyay, T., Jaiswal, V., Prasad, M. (2017). Nutrition Potential of Foxtail Millet in Comparison to Other Millets and Major Cereals. In: Prasad, M. (eds) The Foxtail Millet Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-65617-5_10

Download citation

Publish with us

Policies and ethics