Skip to main content

Optimal Transmission Strategies for Remote State Estimation

  • Chapter
  • First Online:
Optimal Control of Energy Resources for State Estimation Over Wireless Channels

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSCONTROL))

  • 571 Accesses

Abstract

Improving system performance and reliability under resource (e.g. energy/power, computation and communication) constraints is one of the important challenges in wireless-based networks. This concern is particularly crucial in industrial applications such as remote sensing and real-time control where a high level of reliability is usually required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We consider stable systems as the state of an unstable system becomes unbounded over time which makes it difficult to quantize its state estimates.

  2. 2.

    We use \(\varSigma _w\) and \(\varSigma _v\) rather than Q and R to denote the process and measurement noise covariances, as Q and R will be used for the noise covariances of the augmented state space model in Sect. 4.2.1.

  3. 3.

    The proof of concavity is based on the fact that a function f(x) is concave in x if and only if \(f(x_0+th)\) is concave in the scalar t for all \(x_0\) and h.

References

  1. J. Baillieul, P.J. Antsaklis, Control and communication challenges in networked real-time systems. Proc. IEEE 95(1), 9–28 (2007)

    Article  Google Scholar 

  2. G.N. Nair, R.J. Evans, Stabilizability of stochastic linear systems with finite feedback data rates. SIAM J. Control Optim. 43(2), 413–436 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Minero, L. Coviello, M. Franceschetti, Stabilization over Markov feedback channels: the general case. IEEE Trans. Autom. Control 58(2), 349–362 (2013)

    Article  MathSciNet  Google Scholar 

  4. G.N. Nair, F. Fagnani, S. Zampieri, R.J. Evans, Feedback control under data rate constraints: an overview. Proc. IEEE 95(1), 108–137 (2007)

    Article  Google Scholar 

  5. K. You, L. Xie, Minimum data rate for mean square stabilization of discrete LTI systems over lossy channels. IEEE Trans. Autom. Control 55(10), 2373–2378 (2010)

    Article  MathSciNet  Google Scholar 

  6. M. Trivellato, N. Benvenuto, State control in networked control systems under packet drops and limited transmission bandwidth. IEEE Trans. Commun. 58(2), 611–622 (2010)

    Article  Google Scholar 

  7. D.E. Quevedo, A. Ahlén, D. Nesic, Packetized predictive control of stochastic systems over bit-rate limited channels with packet loss. IEEE Trans. Autom. Control 56(12), 2854–2868 (2011)

    Article  MathSciNet  Google Scholar 

  8. S. Dey, A. Chiuso, L. Schenato, Remote estimation with noisy measurements subject to packet loss and quantization noise. IEEE Trans. Control Netw. Syst. 1(3), 204–217 (2014)

    Article  MathSciNet  Google Scholar 

  9. B.D.O. Anderson, J.B. Moore, Optimal Filtering (Prentice Hall, New Jersey, 1979)

    MATH  Google Scholar 

  10. D.E. Quevedo, A. Ahlén, J. Østergaard, G.C. Goodwin, Innovations-based state estimation with wireless sensor networks, in Proceedings of the ECC, Budapest, Hungary (2009), pp. 4858–4864

    Google Scholar 

  11. N.S. Jayant, P. Noll, Digital Coding of Waveforms (Prentice Hall, Englewood Cliffs, 1984)

    Google Scholar 

  12. D. Marco, D.L. Neuhoff, The validity of the additive noise model for uniform scalar quantizers. IEEE Trans. Inf. Theory 51(5), 1739–1755 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. V.K. Goyal, High-rate transform coding: How high is high, and does it matter? in Proceedings of the ISIT, Sorrento, Italy (2000), p. 207

    Google Scholar 

  14. P.W. Moo, Asymptotic analysis of lattice-based quantization. Ph.D. dissertation, University of Michigan (1998)

    Google Scholar 

  15. A. Gersho, Asymptotically optimal block quantization. IEEE Trans. Inf. Theory 25(4), 373–380 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.G. Proakis, Digital Communications, 4th edn. (McGraw-Hill, New York, 2001)

    Google Scholar 

  17. M.H. Ngo, V. Krishnamurthy, Optimality of threshold policies for transmission scheduling in correlated fading channels. IEEE Trans. Commun. 57(8), 2474–2483 (2009)

    Article  Google Scholar 

  18. D.M. Topkis, Supermodularity and Complementarity (Princeton University Press, Princeton, 2001)

    Google Scholar 

  19. D.P. Bertsekas, Dynamic Programming and Optimal Control, vol. I, 2nd edn. (Athena Scientific, Belmont, 2000)

    Google Scholar 

  20. V. Gupta, T.H. Chung, B. Hassibi, R.M. Murray, On a stochastic sensor selection algorithm with applications in sensor scheduling and sensor coverage. Automatica 42(2), 251–260 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Simchi-Levi, X. Chen, J. Bramel, The Logic of Logistics: Theory, Algorithms, and Applications for Logistics and Supply Chain Management (Springer, Berlin, 2004)

    Google Scholar 

  22. M. Nourian, A.S. Leong, S. Dey, D.E. Quevedo, An optimal transmission strategy for Kalman filtering over packet dropping links with imperfect acknowledgements. IEEE Trans. Control Netw. Syst. 1(3), 259–271 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex S. Leong .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Leong, A.S., Quevedo, D.E., Dey, S. (2018). Optimal Transmission Strategies for Remote State Estimation. In: Optimal Control of Energy Resources for State Estimation Over Wireless Channels. SpringerBriefs in Electrical and Computer Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-65614-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65614-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65613-7

  • Online ISBN: 978-3-319-65614-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics