Skip to main content

Optimal Power Allocation for Kalman Filtering over Fading Channels

  • Chapter
  • First Online:
Book cover Optimal Control of Energy Resources for State Estimation Over Wireless Channels

Abstract

Kalman filtering with random packet drops has been studied extensively since the work of Sinopoli (IEEE Trans. Autom. Control 49(9), 1453–1464, 2004, [1]), which showed that for i.i.d. Bernoulli packet drops, there exists a critical threshold such that if the packet arrival rate exceeds this threshold, then the expected error covariance remains bounded but diverges otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We say that a matrix \(X>0\) if X is positive definite, and \(X\ge 0\) if X is positive semi-definite.

  2. 2.

    In practice this can be determined using simple error detecting codes.

  3. 3.

    In practice, this can be achieved by periodically sending pilot signals either from the sensor to the remote estimator to allow the remote estimator to estimate the channel, or from the remote estimator to the sensor under channel reciprocity.

  4. 4.

    In wireless communications, online computation of powers at the base station, which is then fed back to the mobile transmitters, is commonly done in practice [12], at time scales on the order of milliseconds.

  5. 5.

    We measure energy on a per channel use basis and we will refer to energy and power interchangeably in this chapter.

References

  1. B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M.I. Jordan, S.S. Sastry, Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49(9), 1453–1464 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. X. Liu, A.J. Goldsmith, Kalman filtering with partial observation losses, in Proceedings of the IEEE Conference on Decision and Control, Bahamas (2004), pp. 1413–1418

    Google Scholar 

  3. V. Gupta, N.C. Martins, J.S. Baras, Optimal output feedback control using two remote sensors over erasure channels. IEEE Trans. Autom. Control 54(7), 1463–1476 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. K. Plarre, F. Bullo, On Kalman filtering for detectable systems with intermittent observations. IEEE Trans. Autom. Control 54(2), 386–390 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Mo, B. Sinopoli, Kalman filtering with intermittent observations: tail distribution and critical value. IEEE Trans. Autom. Control 57(3), 677–689 (2012)

    Article  MathSciNet  Google Scholar 

  6. M. Epstein, L. Shi, A. Tiwari, R.M. Murray, Probabilistic performance of state estimation across a lossy network. Automatica 44, 3046–3053 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Shi, M. Epstein, R.M. Murray, Kalman filtering over a packet-dropping network: a probabilistic perspective. IEEE Trans. Autom. Control 55(3), 594–604 (2010)

    Article  MathSciNet  Google Scholar 

  8. Y. Xu, J.P. Hespanha, Estimation under uncontrolled and controlled communications in networked control systems, in Proceedings of the IEEE Conference on Decision and Control, Seville, Spain (2005), pp. 842–847

    Google Scholar 

  9. L. Schenato, Optimal estimation in networked control systems subject to random delay and packet drop. IEEE Trans. Autom. Control 53(5), 1311–1317 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Huang, S. Dey, Stability of Kalman filtering with Markovian packet losses. Automatica 43, 598–607 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. K. You, M. Fu, L. Xie, Mean square stability for Kalman filtering with Markovian packet losses. Automatica 47(12), 1247–1257 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. A.F. Molisch, Wireless Communications, 2nd edn. (Wiley, New York, 2011)

    Google Scholar 

  13. D.N.C. Tse, P. Viswanath, Fundamentals of Wireless Communication (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  14. A.S. Leong, S. Dey, G.N. Nair, P. Sharma, Power allocation for outage minimization in state estimation over fading channels. IEEE Trans. Signal Process. 59(7), 3382–3397 (2011)

    Article  MathSciNet  Google Scholar 

  15. D.E. Quevedo, A. Ahlén, J. Østergaard, Energy efficient state estimation with wireless sensors through the use of predictive power control and coding. IEEE Trans. Signal Process. 58(9), 4811–4823 (2010)

    Article  MathSciNet  Google Scholar 

  16. D.E. Quevedo, A. Ahlén, A.S. Leong, S. Dey, On Kalman filtering over fading wireless channels with controlled transmission powers. Automatica 48(7), 1306–1316 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. M.M. Tentzeris, A. Georgiadis, L. Roselli (eds.), Special issue on energy harvesting and scavenging. Proc. IEEE 102(11) (2014)

    Google Scholar 

  18. S. Ulukus, E. Erkip, P. Grover, K. Huang, O. Simeone, A. Yener, M. Zorzi (eds.), Special issue on wireless communications powered by energy harvesting and wireless energy transfer. IEEE J. Sel. Areas Commun. 33(3) (2015)

    Google Scholar 

  19. D. Niyato, E. Hossain, M. Rashid, V. Bhargava, Wireless sensor networks with energy harvesting technologies: a game-theoretic approach to optimal energy management. IEEE Trans. Wirel. Commun. 14(4), 90–96 (2007)

    Article  Google Scholar 

  20. V. Sharma, U. Mukherji, V. Joseph, S. Gupta, Optimal energy management policies for energy harvesting sensor nodes. IEEE Trans. Wirel. Commun. 9(4), 1326–1336 (2010)

    Article  Google Scholar 

  21. O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, A. Yener, Transmission with energy harvesting nodes in fading wireless channels: optimal policies. IEEE J. Sel. Areas Commun. 29(8), 1732–1743 (2011)

    Article  Google Scholar 

  22. C.K. Ho, R. Zhang, Optimal energy allocation for wireless communications with energy harvesting constraints. IEEE Trans. Signal Process. 60(9), 4808–4818 (2012)

    Article  MathSciNet  Google Scholar 

  23. M. Kashef, A. Ephremides, Optimal packet scheduling for energy harvesting sources on time varying wireless channels. J. Commun. Netw. 14(2), 121–129 (2012)

    Article  Google Scholar 

  24. A. Nayyar, T. Başar, D. Teneketzis, V.V. Veeravalli, Optimal strategies for communication and remote estimation with an energy harvesting sensor. IEEE Trans. Autom. Control 58(9), 2246–2260 (2013)

    Article  MathSciNet  Google Scholar 

  25. D.M. Topkis, Supermodularity and Complementarity (Princeton University Press, Princeton, 2001)

    Google Scholar 

  26. J.G. Proakis, Digital Communications, 4th edn. (McGraw-Hill, New York, 2001)

    Google Scholar 

  27. G. Caire, G. Taricco, E. Biglieri, Optimum power control over fading channels. IEEE Trans. Inf. Theory 45(5), 1468–1489 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. T.S. Rappaport, Wireless Communications: Principles and Practice, 2nd edn. (Prentice Hall, Upper Saddle River, 2002)

    Google Scholar 

  29. D.E. Quevedo, J. Østergaard, A. Ahlén, Power control and coding formulation for state estimation with wireless sensors. IEEE Trans. Control Syst. Technol. 22(2), 413–427 (2014)

    Article  Google Scholar 

  30. O. Hernández-Lerma, J. González-Hernández, R.R. López-Martínez, Constrained average cost Markov control processes in Borel spaces. SIAM J. Control Optim. 42(2), 442–468 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. N. Ghasemi, S. Dey, Power-efficient dynamic quantization for multisensor HMM state estimation over fading channels, in Proceedings of the ISCCSP, Malta (2008), pp. 1553–1558

    Google Scholar 

  32. D.P. Bertsekas, Dynamic Programming and Optimal Control, vol. I, 2nd edn. (Athena Scientific, Belmont, 2000)

    Google Scholar 

  33. O. Hernández-Lerma, J.B. Lasserre, Discrete-Time Markov Control Processes: Basic Optimality Criteria (Springer, Berlin, 1996)

    Google Scholar 

  34. H. Yu, D.P. Bertsekas, Discretized approximations for POMDP with average cost, in Proceedings of the 20th Conference on Uncertainty in Artifical Intelligence, Banff, Canada (2004), pp. 619–627

    Google Scholar 

  35. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  36. R.A. Berry, R.G. Gallager, Communication over fading channels with delay constraints. IEEE Trans. Inf. Theory 48(5), 1135–1149 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. A.J. Goldsmith, P.P. Varaiya, Capacity of fading channels with channel side information. IEEE Trans. Inf. Theory 43(6), 1986–1992 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. C.K. Ho, P.D. Khoa, P.C. Ming, Markovian models for harvested energy in wireless communications,” in IEEE International Conference on Communication System (ICCS), Singapore (2010), pp. 311–315

    Google Scholar 

  39. D.E. Quevedo, A. Ahlén, K.H. Johansson, State estimation over sensor networks with correlated wireless fading channels. IEEE Trans. Autom. Control 58(3), 581–593 (2013)

    Article  MathSciNet  Google Scholar 

  40. D. Simchi-Levi, X. Chen, J. Bramel, The Logic of Logistics: Theory, Algorithms, and Applications for Logistics and Supply Chain Management (Springer, Berlin, 2004)

    Google Scholar 

  41. M. Nourian, A.S. Leong, S. Dey, Optimal energy allocation for Kalman filtering over packet dropping links with imperfect acknowledgments and energy harvesting constraints. IEEE Trans. Autom. Control 59(8), 2128–2143 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. A.S. Leong, S. Dey, Power allocation for error covariance minimization in Kalman filtering over packet dropping links, in Proceedings of the IEEE Conference on Decision and Control, Maui, HI (2012), pp. 3335–3340

    Google Scholar 

  43. S. Knorn, S. Dey, Optimal energy allocation for linear control with packet loss under energy harvesting constraints. Automatica 77, 259–267 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Y. Li, F. Zhang, D.E. Quevedo, V. Lau, S. Dey, L. Shi, Power control of an energy harvesting sensor for remote state estimation. IEEE Trans. Autom. Control 62(1), 277–290 (2017)

    Google Scholar 

  45. J. Huang, D. Shi, T. Chen, Event-triggered state estimation with an energy harvesting sensor. IEEE Trans. Autom. Control (2017), to appear

    Google Scholar 

  46. J. Wu, Y. Li, D.E. Quevedo, V. Lau, L. Shi, Data-driven power control for state estimation: a Bayesian inference approach. Automatica 54, 332–339 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. K. Gatsis, A. Ribeiro, G.J. Pappas, Optimal power management in wireless control systems. IEEE Trans. Autom. Control 59(6), 1495–1510 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Schäl, Average optimality in dynamic programming with general state space. Math. Oper. Res. 18(1), 163–172 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  49. M. Huang, S. Dey, Dynamic quantizer design for hidden Markov state estimation via multiple sensors with fusion center feedback. IEEE Trans. Signal Process. 54(8), 2887–2896 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex S. Leong .

Appendix

Appendix

2.1.1 Proof of Lemma 2.2

Proof

The proof uses similar ideas to the proof of Proposition 3.1 in [36]. The decreasing property follows from the relation

$$\begin{aligned} \mathbb {E}[P_{k+1}]&= \mathbb {E}[P_{k+1}|P_k, g_k,u_k]\\&= \mathbb {E}[A P_k A^T \!\!+\! Q\! -\! f(g_k u_k) A P_k C^T \!(C P_k C^T\!\!+\!R)^{-1}\! C P_k A^T] \end{aligned}$$

and the assumption that f(.) is an increasing function.

For the proof of convexity, let \(u^1\) and \(u^2\) be two average transmit powers, where \(u^1 \ne u^2\), with \(\mathfrak {p}^*(u^1)\) and \(\mathfrak {p}^*(u^2)\) the corresponding traces of the expected error covariances. We want to show that

$$\mathfrak {p}^*(\lambda u^1 + (1-\lambda )u^2) < \lambda \mathfrak {p}^*(u^1) + (1-\lambda ) \mathfrak {p}^*(u^2), \forall \lambda \in (0,1).$$

Let \(\{u_k^1 (P_k,g_k)\}\) be the optimal power allocation policy that achieves \(\mathfrak {p}^*(u^1)\), and \(\{u_k^2(P_k,g_k)\}\) be the optimal power allocation policy that achieves \(\mathfrak {p}^*(u^2)\). Define a new policy \(\{u^\lambda _k(P_k,g_k)\}\) such that

$$u_k^\lambda (P_k,g_k) = \lambda u_k^1(P_k,g_k) + (1-\lambda ) u_k^2(P_k,g_k), \forall P_k,g_k.$$

We will first show that for a given \(P_k\), we have:

$$\begin{aligned} \begin{aligned}&(1)\,\, \mathbb {E}[u_k^\lambda | P_k] \le \lambda \mathbb {E}[u_k^1 | P_k] + (1-\lambda ) \mathbb {E}[u_k^2 | P_k], \text { and } \\&(2)\,\, \mathbb {E}[\text {tr}(P_{k+1}^\lambda ) | P_k] < \lambda \mathbb {E}[\text {tr}(P_{k+1}^1) | P_k] + (1-\lambda ) \mathbb {E}[\text {tr}(P_{k+1}^2) | P_k], \end{aligned} \end{aligned}$$

where \(P_{k+1}^j\) is the value of \(P_{k+1}\) that follows from using policy \(\{u_k^j(.)\}\), for \(j=1,2,\lambda \), respectively. For (1), this clearly follows from the definition of \(u_k^\lambda \). For (2), we have

$$\begin{aligned} \begin{aligned}&\mathbb {E}[\text {tr}(P_{k+1}^\lambda ) | P_k] \\&= \int \Big ( \text {tr}(A P_k A^T+ Q) - f(g_k u_k^\lambda ) \text {tr}(A P_k C^T (C P_k C^T + R)^{-1} C P_k A^T ) \Big ) F(dg_k) \\&< \int \Big (\text {tr}(A P_k A^T + Q) - (\lambda f(g_k u_k^1) + (1-\lambda ) f(g_k u_k^2)) \\&\qquad \qquad \times \text {tr}(A P_k C^T (C P_k C^T + R)^{-1} C P_k A^T ) \Big )F(dg_k)\\&= \lambda \mathbb {E}[\text {tr}(P_{k+1}^1)|P_k] + (1-\lambda ) \mathbb {E}[\text {tr}(P_{k+1}^2)|P_k] \end{aligned} \end{aligned}$$

where the inequality comes from the strict concavity of f(.).

From (1) and (2), we have

$$\begin{aligned} \begin{aligned} \lim _{K\rightarrow \infty } \frac{1}{K} \sum _{k=1}^K \mathbb {E}[u_k^\lambda ]&= \lim _{K\rightarrow \infty } \frac{1}{K} \sum _{k=1}^K \mathbb {E}[\mathbb {E}[u_k^\lambda |P_k]] \\&\le \lim _{K\rightarrow \infty } \frac{1}{K} \sum _{k=1}^K \mathbb {E}[\lambda \mathbb {E}[u_k^1|P_k] + (1-\lambda ) \mathbb {E}[u_k^2|P_k]] \\&= \lambda u^1 + (1-\lambda ) u^2 \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} \lim _{K\rightarrow \infty } \frac{1}{K} \sum _{k=1}^K \mathbb {E}[\text {tr}(P_{k+1}^\lambda )]&= \lim _{K\rightarrow \infty } \frac{1}{K} \sum _{k=1}^K \mathbb {E}[\mathbb {E}[\text {tr}(P_{k+1}^\lambda )|P_k]] \\&< \lim _{K\rightarrow \infty } \frac{1}{K} \sum _{k=1}^K \mathbb {E}\Big [\lambda \mathbb {E}[\text {tr}(P_{k+1}^1)|P_k] + (1-\lambda ) \mathbb {E}[\text {tr}(P_{k+1}^2)|P_k]\Big ] \\&= \lambda \mathfrak {p}^*(u^1) + (1-\lambda ) \mathfrak {p}^*(u^2). \end{aligned} \end{aligned}$$

By the definition of \(\mathfrak {p}^*(u)\) being the minimum expected error covariance such that the average transmit power is less than or equal to u, we then have \(\mathfrak {p}^*(\lambda u^1 + (1-\lambda )u^2) \le \frac{1}{K} \sum _{k=1}^K \mathbb {E}[\text {tr}(P_{k+1}^\lambda )] < \lambda \mathfrak {p}^*(u^1) + (1-\lambda ) \mathfrak {p}^*(u^2)\).

2.1.2 Proof of Theorem 2.3

We first establish the inequality

$$\begin{aligned}&\rho + V(P,g,H,B) \ge \min _{0 \le u \le B} \Big \{\mathbb {E} \big [\mathrm {tr}\big (\mathscr {L}(P,\gamma )\big )\big |P,g,u\big ] \nonumber \\& + \mathbb {E} \Big [V\big (\mathscr {L}(P,\gamma ),\tilde{g},\tilde{H},\min \{B-u+\tilde{H}, B_{\text {max}}\}\big ) \big | P,g,H,u\Big ] \Big \} \end{aligned}$$
(2.26)

by verifying conditions (W) and (B) of [48], that guarantee the existence of solutions to (2.26) for MDPs with general state space. Denote the state space by \(\mathscr {S}\) and action space by \(\mathscr {A}\), i.e. \((P_k,g_k,H_k,B_k) \in \mathscr {S}\) and \(u_k \in \mathscr {A}\). Condition (W) of [48] in our notation says that:

(1) The state space \(\mathscr {S}\) is locally compact.

(2) Let \(U(\cdot )\) be the mapping that assigns to each \((P_k,g_k,H_k,B_k)\) the nonempty set of available actions. Then \(U(P_k,g_k,H_k,B_k)\) lies in a compact subset of \(\mathscr {A}\) and \(U(\cdot )\) is upper semicontinuous.

(3) The transition probabilities are weakly continuous.

(4) \(\mathbb {E} \big [\mathrm {tr}\big (\mathscr {L}(P,\gamma )\big )\big |P,g,u\big ]\) is lower semicontinuous.

By our assumption that \(u_k \le B_k \le B_{\text {max}}\), (0) and (1) of (W) can be easily verified. The conditions (2) and (3) follow from the definition (2.23).

Define \(w_{\delta }(P_0,g_0,H_0,B_0) = v_{\delta } (P_0,g_0,H_0,B_0) - m_{\delta }\), where

$$\begin{aligned}&v_{\delta } (P_0,g_0,H_0,B_0) = \inf _{\{u_k: k \ge 0\}} \mathbb {E}\left[ \sum _{k=0}^\infty \delta ^k \mathbb {E} \big [\mathrm {tr}\big (\mathscr {L}(P_k,\gamma _k)\big ) \big |P_k,g_k,u_k\big ]\big |P_0,g_0,H_0,B_0\right] \end{aligned}$$

and \(m_{\delta } = \inf _{(P_0,g_0,H_0,B_0)} v_\delta (P_0,g_0,H_0,B_0)\). Condition (B) of [48] in our notation says that

$$\begin{aligned}&\sup _{\delta<1} w_{\delta } (P_0,g_0,H_0,B_0) < \infty , \qquad \forall ~ (P_0,g_0,H_0,B_0). \end{aligned}$$

Following Sect. 4 of [48], define the stopping time

$$\tau = \inf \{k \ge 0: v_{\delta } (P_k,g_k,H_k,B_k) \le m_{\delta } + \varsigma \}$$

for some \(\varsigma \ge 0\). Given \(\varsigma > 0\) and an arbitrary \((P_0,g_0,H_0,B_0)\), consider a suboptimal power allocation policy where the sensor transmits based on the same policy as the one that achieves \(m_\delta \) (with a different initial condition) until \(v_{\delta } (P_N,g_N,H_N,B_N) \le m_{\delta } + \varsigma \) is satisfied at some time N. By the exponential forgetting property of initial conditions for Kalman filtering, we have \(N < \infty \) with probability 1 and \(\mathbb {E}[N] < \infty \). Since \(\tau \le N\), we have \(\mathbb {E}[\tau ] < \infty \). Then by Lemma 4.1 of [48],

$$\begin{aligned} w_\delta (P_0,g_0,H_0,B_0)&\le \varsigma + \inf _{\{\gamma _k\}} \mathbb {E}\left[ \sum _{k=0}^{\tau -1} \mathbb {E} \big [\mathrm {tr}\big (\mathscr {L}(P_k,\gamma _k)\big ) \big |P_k,g_k,u_k\big ]\big |P_0,g_0,H_0,B_0\right] \nonumber \\&\le \varsigma + \mathbb {E}[\tau ] \times Z < \infty \end{aligned}$$
(2.27)

where the second inequality uses Wald’s equation, with Z being an upper bound to the expected error covariance, which exists by Theorem 2.2. Hence, condition (B) of [48] is satisfied and a solution to the inequality (2.26) exists.

To show equality in (2.26), we will require a further equicontinuity property of the optimal cost for the related discounted cost MDP to be satisfied. This can be shown by a similar argument as in the proof of Proposition 3.2 of [49]. The assumptions in Sects. 5.4 and 5.5 of [33] may then be verified to conclude the existence of a solution to the average cost optimality equation (2.24).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Leong, A.S., Quevedo, D.E., Dey, S. (2018). Optimal Power Allocation for Kalman Filtering over Fading Channels. In: Optimal Control of Energy Resources for State Estimation Over Wireless Channels. SpringerBriefs in Electrical and Computer Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-65614-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65614-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65613-7

  • Online ISBN: 978-3-319-65614-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics