Skip to main content

Design of Wind Tunnel for Testing Stress Corrosion Cracking

  • Conference paper
  • First Online:
  • 459 Accesses

Abstract

Corrosion is one of the greatest threats to civil and military aircraft. In general, the materials that make up aircraft structures are subjected to stresses, causing embrittlement and consequent cracks and fractures. Corrosion and erosion of the aircraft coating, induced by the dynamic chemical environment of the atmosphere, manifests as pitting on the surface material. Because they concentrate the stress, these pits are vulnerable to stress corrosion cracking. In current stress corrosion cracking tests on aeronautics materials, parts constructed from corrosive media are held in universal machines. However, the obtained results do not reflect the flight conditions of the aircraft. Therefore, we propose wind tunnel tests that can assess stress corrosion cracking under simulated flight conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Roberge, P. R. (2008). Corrosion engineering, principles and practice (1st ed., pp. 197–201). New York: McGraw Hill.

    Google Scholar 

  2. Doung, C. N., & Wang, C. H. (2007). Composite repair, theory and design (1st ed., pp. 12–14). Amsterdam/Boston: Elsevier.

    Google Scholar 

  3. Benavides, S. (2009). Corrosion in aerospace industry. In Corrosion control in the aerospace industry, Woodhead publishing in materials (pp. 1–13). Boca Raton: CRC Press.

    Google Scholar 

  4. Baker, A., Dutton, S.,& Kelly, D. (2004). Composite for aircraft structures. AIAA education series (2nd ed., pp. 113–115, 191–203). Woodhead Publishing, Reston, VA, USA.

    Google Scholar 

  5. Cantor, B., Assender, H., & Grant, P. (2001). Aerospace materials (Vol. 1). Institute of Physics Publishing. Philadelphia, PA, USA.

    Google Scholar 

  6. Hou, W., Zhang, W., Liu, X., & Wang, Z. (2011). Ding. M.: Failure analysis of aviation torsional springs. Chinese Journal of Aeronautics, 24(4), 527–532.

    Article  Google Scholar 

  7. Zhang, Q., Song, F. B., Wang, H. G., & Luo, J. H. (2002). Influence of ambient–temperature corrosion on the oxidation behavior of al-Si coatings. Chinese Journal of Aeronautics, 15(4), 244–249.

    Article  Google Scholar 

  8. Baker, C. J. (2007). Wind engineering—Past, present and future. Journal of Wind Engineering and Industrial Aerodynamics, 95, 843–870.

    Article  Google Scholar 

  9. Cermak, J. E. (1979). Application of wind tunnels to investigation of wind-engineering problems. AIAA Journal, 17(7), 679–690.

    Article  Google Scholar 

  10. Ahmed, N. A. (2013). Design features of a low turbulence return circuit subsonic wind tunnel having interchangeable test sections. In N. A. Ahmed (Ed.), Wind tunnel designs and their diverse engineering applications (pp. 29–57). Rijeka: InTech. New South Wales, UK.

    Google Scholar 

  11. Hernández, M. A. G., López, A. I. M., Jarzabek, A. A., Perales, J. M. P., Wu, Y., & Xiaoxiao, S. (2013). Design methodology for a quick and low-cost wind tunnel. In N. A. Ahmed (Ed.), Wind tunnel designs and their diverse engineering applications (pp. 3–28). Rijeka: InTech. New South Wales, UK.

    Google Scholar 

  12. Sastri, S., Ghali, E., & Elboujdaini, M. (2007). Corrosion prevention and protection, practical solutions (1st ed., pp. 336–384). Hoboken: Wiley. New York, USA.

    Google Scholar 

  13. Anderson, J. (2010). Fundamentals of aerodynamicsAnderson series (5th ed., pp. 292–300). McGraw-Hill Education. New York, NY, USA.

    Google Scholar 

  14. Barlow, J. B., Rae, W. H., & Pope, A. (1999). Low-speed wind tunnel testing (3rd ed., pp. 62–213). New York: Wiley.

    Google Scholar 

  15. Mehta, R. D., & Bradshaw, P. (1979). Design rules for small low speed wind tunnel. The Aeronautical Journal of the Royal Aeronautical Society., 83, 443–453.

    Google Scholar 

  16. Mehta, R. D. (1977). The aerodynamic design of blower tunnels with wide-angle diffusers. Prog. Aerospace Sci., 18, 59–120.

    Article  Google Scholar 

  17. Mikhail, M. N. (1974). Optimum design of wind tunnel contractions. AIAA Journal, 17(5), 471–477.

    Article  Google Scholar 

  18. Chmielewski, G. E. (1974). Boundary-layer considerations in the design of aerodynamic contractions. Journal of Aircraft, 11(8), 435–438.

    Article  Google Scholar 

  19. Cengel, Y., & Cimbala, J. M. (2006). Fluid mechanics, fundamentals and applications (2nd ed., pp. 351–357). New York: McGraw-Hill.

    Google Scholar 

  20. Bell, J. H., & Mehta, R. (1998). Contraction design for small low-speed wind tunnels. Washington, DC: National Aeronautics Space Administration-Ames Research Center.

    Google Scholar 

  21. Nordin, N., Ambri, Z., Karim, A., Othman, S., & Raghavan, V. R. (2013). Design and development of low subsonic wind tunnel for turning diffuser application. Advanced Materials Research, 614–615, 586–591.

    Google Scholar 

  22. Cattafesta, L., Bahr, C., & Mathew, J. (2010). Fundamentals of wind-tunnel design. In R. Blockley & W. Shyy (Eds.), Encyclopedia of aerospace engineering. Hoboken: Wiley.

    Google Scholar 

  23. Phelps, E. H., & Loginow, A. W. (1960). Stress corrosion of steels for aircraft and missiles. Corrosion-National of Corrosion Engineers, 16, 325t–335t.

    Google Scholar 

  24. Wanhill, R. J. H., & Byrnes, R. T. (2017). Stress corrosion cracking in aircraft. In Aerospace materials and material technology, Indian institute of metals series (pp. 387–410). Singapore: Springer Science + Business, Media.

    Chapter  Google Scholar 

  25. Carter, A. E., & Hanagud, S. (1975). Stress corrosion susceptibility of stress-coined fastener holes in aircraft structures. AIAA Journal, 13(7), 858–863.

    Article  Google Scholar 

  26. Liao, M., Bellinger, N. C., & Komorowski, J. P. (2003). Modelling the effects of prior exfoliation corrosion on fatigue life of aircraft wing skins. International Journal of Fatigue, 25, 1059–1067.

    Article  Google Scholar 

  27. Pidaparti, R. M., & Patel, R. R. (2008). Correlation between corrosion pits and stresses in al alloys. Materials Letters, 62, 4497–4499.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Alonso Romero-Jabalquinto and Miguel Angel Neri-Alvarez for their invaluable support during the first stage of the process design.

Future Work

In the next stage of our research, we will measure the stress and determine the wind corrosion under flight conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bermúdez-Reyes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Bermúdez-Reyes, B., Zambrano-Robledo, P., Almeraya Calderon, F., Zárate-Tomás, C., Medrano-Mejía, A., Vargas-Bernal, R. (2018). Design of Wind Tunnel for Testing Stress Corrosion Cracking. In: Zambrano-Robledo, P., Salinas-Rodriguez, A., Almeraya Calderon, F. (eds) Proceedings of the Symposium of Aeronautical and Aerospace Processes, Materials and Industrial Applications. IMRC 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-65611-3_8

Download citation

Publish with us

Policies and ethics