Advertisement

Ron Bracewell: Mathematics and Imaging

  • R. H. Frater
  • W. M. Goss
  • H. W. Wendt
Chapter
Part of the Astronomers' Universe book series (ASTRONOM)

Abstract

The career and the scientific contributions of Ronald Newbold Bracewell (1921–2007) range from providing the mathematical basis for indirect imaging used in all radio astronomy imaging as well as in medical imaging and his elucidation of the Fourier transform.

References

  1. Bhathal, R. (2000). Recorded interview with Professor Ronald Newbold Bracewell b.1921 10 June 2000. Oral History Section – National Library of Australia.Google Scholar
  2. Bracewell, R. N. (1956). Strip integration in radio astronomy. Australian Journal of Physics, 9, 198–217.CrossRefGoogle Scholar
  3. Bracewell, R. N. (1958). Radio interferometry of discrete sources. Proceedings of the Institute of Radio Engineers, 46, 97–105.Google Scholar
  4. Bracewell, R. N. (1961). Tolerance theory of large antennas. Institute of Radio Engineers, Transactions on Antennas and Propagation, AP-9, 49–58.CrossRefGoogle Scholar
  5. Bracewell, R. N. (1965). The Fourier transform and its applications (2nd ed., 1978; 3rd ed., 2000). New York: McGraw Hill.Google Scholar
  6. Bracewell, R. N. (1966). Optimum spacings for radio telescopes with unfilled apertures. In Progress in scientific radio (15th URSI Assembly, pp. 243–244). Publication 1468, National Academy of Sciences, National Research Center.Google Scholar
  7. Bracewell, R. N. (1974). The Galactic club. Stanford: Stanford Alumni Association.Google Scholar
  8. Bracewell, R. N. (1992). Planetary influences on electrical engineering. Proceedings of the Institute of Electronic and Electrical Engineers, 80, 230–237.CrossRefGoogle Scholar
  9. Bracewell, R. N. (1995). Two-dimensional imaging. New York: Prentice-Hall (Republished in 2003 as Fourier analysis and imaging. New York: Kluwer Academic/Plenum).Google Scholar
  10. Bracewell, R. N. (1998). Impulses concealed by singularities: Transmission-line theory. Electronics Letters, 34, 1927–1928.CrossRefGoogle Scholar
  11. Bracewell, R. N. (2002). The discovery of strong extragalactic polarization using the Parkes radio telescope. Journal of Astronomical History and Heritage, 5, 107–114.Google Scholar
  12. Bracewell, R. N. (2005). Radio astronomy at Stanford. Journal of Astronomical History and Heritage, 8, 75–86.Google Scholar
  13. Bracewell, R. N., & Conklin, E. K. (1968). An observer moving in the 3° K radiation field. Nature, 219, 1343–1344.CrossRefGoogle Scholar
  14. Bracewell, R. N., & Garriott, O. K. (1958). Rotation of artificial earth satellites. Nature, 182, 760–762.CrossRefGoogle Scholar
  15. Bracewell, R. N., & Riddle, A. C. (1967). Inversion of fan beam scans in radio astronomy. Astrophysical Journal, 150, 427–434.CrossRefGoogle Scholar
  16. Bracewell, R. N., & Roberts, J. A. (1954). Aerial smoothing in radio astronomy. Australian Journal of Physics, 7, 615–640.CrossRefGoogle Scholar
  17. Bracewell, R. N., & Straker, T. W. (1949). The study of solar flares by means of very long radio waves. Monthly Notices of the Royal Astronomical Society, 108, 28–45.CrossRefGoogle Scholar
  18. Bracewell, R. N., & Swarup, G. (1961). The Stanford microwave spectroheliograph antenna, a microsteradian pencil beam antenna. Institute of Radio Engineers, Transactions on Antennas and Propagation, AP-9, 22–30.CrossRefGoogle Scholar
  19. Bracewell, R. N., Cooper, B. F. C., & Cousins, T. E. (1962a). Polarization in the central component of Centaurus A. Nature, 195, 1289–1290.CrossRefGoogle Scholar
  20. Bracewell, R. N., Swarup, G., & Seeger, C. L. (1962b). Future large radio telescopes. Nature, 193, 412–416.CrossRefGoogle Scholar
  21. Bracewell, R. N., Colvin, R. S., Price, K. M., & Thompson, A. R. (1971). Stanford’s high-resolution radio interferometer. Sky and Telescope, 42(1), 4–9.Google Scholar
  22. Bracewell, R. N., Colvin, R. S., D’Addario, L. R., Grebenkemper, C. J., Price, K. M., & Thompson, A. R. (1973). The Stanford five-element radio telescope. Proceedings of the Institute of Electronic and Electrical Engineers, 61, 1249–1257.CrossRefGoogle Scholar
  23. Christiansen, W. N., & Warburton, J. A. (1955a). The distribution of radio brightness over the solar disk at a wavelength of 21 cm. Part III. The Quiet sun – Two-dimensional observations. Australian Journal of Physics, 8, 474–486.CrossRefGoogle Scholar
  24. Christiansen, W. N., & Warburton, J. A. (1955b). The Sun in two-dimensions at 21 cm. The Observatory, 75, 9–10.Google Scholar
  25. Conklin, E. K. (1969). Velocity of the earth with respect to the cosmic background radiation. Nature, 222, 971–972.CrossRefGoogle Scholar
  26. Goss, W. M. (2017). Origins of radio astronomy at the tata institute of fundamental research and the role of J. L. Pawsey. In J. N. Chengalur & Y. Gupta (Eds.) The metrewavelength sky (p. 409). Astronomical Society of India.Google Scholar
  27. Haynes, R. F., Haynes, R. D., Malin, D., & McGee, R. X. (1996). Explorers of the southern sky: A history of Australian astronomy. Cambridge: Cambridge University Press.Google Scholar
  28. Little, A. G. (1961). A wide-band single-diode parametric amplifier using filter techniques. Proceedings of the Institute of Radio Engineers, 39, 821–822.Google Scholar
  29. Little, A. G., Cudaback, D. D., & Bracewell, R. N. (1964). Structure of the central component of Centaurus A. Proceedings of the National Academy of Sciences, 52, 690–691.CrossRefGoogle Scholar
  30. Mihovilovic, D., & Bracewell, R. N. (1991). Adaptive chirplet representation of signals on time-frequency plane. Electronics Letters, 27, 1159–1161.CrossRefGoogle Scholar
  31. Mills, B. Y., & Little, A. G. (1953). A High-resolution aerial system of a new type. Australian Journal of Physics, 6, 272–278.CrossRefGoogle Scholar
  32. Orchiston, W., Slee, B., & Burman, R. (2006). The genesis of solar radio astronomy in Australia. Journal of Astronomical History and Heritage, 9, 35–56.Google Scholar
  33. Pawsey, J. L., & Bracewell, R. N. (1955). Radio astronomy. Oxford: Clarendon Press.Google Scholar
  34. Penzias, A. A., & Wilson, R. W. (1965). A measurement of excess antenna temperature at 4080 Mc/s. Astrophysical Journal, 142, 419–421.CrossRefGoogle Scholar
  35. Price, K. M., & Stull, M. A. (1973). High resolution observations of the radio galaxy NGC 5128 (Centaurus A) at 10.7 GHz. Nature, 245, 83–85.Google Scholar
  36. Sullivan, W. T., III. (1984). The early history of radio astronomy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  37. Swarup, G. (2006). From Potts Hill (Australia) to Pune (India): The journey of a radio astronomer. Journal of Astronomical History and Heritage, 9, 21–33.Google Scholar
  38. Swarup, G., & Yang, K. S. (1961). Phase adjustment of large antennas. Institute of Radio Engineers, Transactions on Antennas and Propagation, AP-9, 75–81.CrossRefGoogle Scholar
  39. Swarup, G., Thompson, A. R., & Bracewell, R. N. (1963). The structure of Cygnus A. Astrophysical Journal, 138, 305–309.CrossRefGoogle Scholar
  40. Thompson, A. R., & Krishnan, T. (1965). Observations of the six most intense sources with a 1.0′ fan beam. Astrophysical Journal, 141, 19–33.CrossRefGoogle Scholar
  41. Verley, J. G., & Bracewell, R. N. (1979). Blurring in tomograms made with X-ray beams of finite width. Journal of Computer Assisted Tomography, 3, 662–678.CrossRefGoogle Scholar
  42. Wendt, H., Orchiston, W., & Slee, B. (2008). W.N. Christiansen and the development of the solar grating array. Journal of Astronomical History and Heritage, 11, 173–184.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • R. H. Frater
    • 1
  • W. M. Goss
    • 2
  • H. W. Wendt
    • 3
  1. 1.LindfieldAustralia
  2. 2.National Radio Astronomy ObservatorySocorroUSA
  3. 3.VaucluseAustralia

Personalised recommendations