Skip to main content

Dissipative Version of Time-Independent Nonlinear Quantum Mechanics

  • Chapter
  • First Online:
Quantum Theory from a Nonlinear Perspective

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 191))

  • 1158 Accesses

Abstract

In the time-dependent (TD) non-dissipative case , the information on the time-evolution of the wave.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the phase factor \(\frac{\mathrm{i} m}{\hbar } \frac{\gamma }{4} \tilde{x}^2\) (apart from the factor \(e^{\gamma t}\) linking the physical with canonical level) corresponds to the unitary transformation between the Caldirola–Kanai approach and the one in expanding variables , as given in Eq. (4.70).

  2. 2.

    The replacement \(V = \frac{m}{2} \omega ^2 x^2 \rightarrow \hat{V} = \frac{m}{2} \left( \omega ^2 - \frac{\gamma ^2}{4} \right) x^2\) in this position-dependent problem corresponds to the replacement \(\omega ^2 \rightarrow \left( \omega ^2 - \frac{\gamma ^2}{4} \right) \) in the TD problem Eq. (5.15) and the description in expanding variables, Eq. (4.66).

References

  1. E. Madelung, Die Mathematischen Hilfsmittel des Physikers (Springer, Berlin, 1950), p. 432

    Book  MATH  Google Scholar 

  2. B. Mrowka, Zur Darstellung der Quantenmechanik I. Z. Phys. 130, 164–173 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. D. Schuch, K.-M. Chung, H. Hartmann, Nonlinear Schrödinger-type field equation for the description of dissipative systems. I. Derivation of the nonlinear field equation and one-dimensional example. J. Math. Phys. 24, 1652 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. D. Schuch, K.-M. Chung, From macroscopic irreversibility to microscopic reversibility via a nonlinear Schrödinger-type field equation. Int. J. Quant. Chem. 29, 1561–1573 (1986)

    Google Scholar 

  5. G. Süssmann, unpublished, quoted in Hasse, Ref. [6] and Albrecht, Ref. [7]

    Google Scholar 

  6. R.W. Hasse, On the quantum mechanical treatment of dissipative systems. J. Math. Phys. 16, 2005–2011 (1975)

    Google Scholar 

  7. K. Albrecht, A new class of Schrödinger operators for quantized friction. Phys. Lett. B 56, 127–129 (1975)

    Article  ADS  Google Scholar 

  8. D. Schuch, Complex Riccati equations as a link between different approaches for the description of dissipative and irreversible systems. J. Phys. Conf. Ser. 380, 012009 (2012) (22 pp)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Schuch .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schuch, D. (2018). Dissipative Version of Time-Independent Nonlinear Quantum Mechanics. In: Quantum Theory from a Nonlinear Perspective . Fundamental Theories of Physics, vol 191. Springer, Cham. https://doi.org/10.1007/978-3-319-65594-9_6

Download citation

Publish with us

Policies and ethics