Skip to main content

Time-Independent Schrödinger and Riccati Equations

  • Chapter
  • First Online:
Quantum Theory from a Nonlinear Perspective

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 191))

  • 1207 Accesses

Abstract

In Sect. 2.11 it has been shown how a generalization of the creation and annihilation operators, known from the algebraic treatment of the harmonic oscillator (HO) problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This nomenclature is somewhat misleading, as W has the dimension of the square-root of energy, not energy like a usual potential.

  2. 2.

    In comparison with a and \(a^+\) as defined in (2.200) and (2.201), a factor \(\sqrt{\frac{1}{\hbar \omega _0}}\) is missing because the definitions in Sect. 2.11 refer to \(\tilde{H}_{\mathrm{op}} = \frac{H_{\mathrm{op}}}{\hbar \omega _0}\). Further, \(B^-\) corresponds to a.

  3. 3.

    Here \(E_0\) is the ground state energy of the conventional solution of the problems.

  4. 4.

    This “construction of families of potentials strictly isospectral to the initial (bosonic) one” can also be interpreted as a “double Darboux general Riccati” transformation of the inverse Darboux type, going in two steps from an initial bosonic to a deformed bosonic system; for details, see [4].

  5. 5.

    Note that the notation in [3] and the one used here differs as the quantities with and without tilde are interchanged.

  6. 6.

    N.B.: The kinetic energy term divided by a is just identical to \(V_{\mathrm{qu}}\)!

  7. 7.

    A similar formulation of the TISE in terms of this equation, but within a different context and with different applications, has also been given in [9]. In another paper [10, 11] the relation between the Ermakov equation (3.39) and the TISE has been extended to also include magnetic field effects and in [11] possible connections between SUSY and Ermakov theories are considered. The NL differential equation (3.39) has also been used to obtain numerical solutions of the TISE for single and double-minimum potentials as well as for complex energy resonance states; for details see [12, 13]. Here, however, we want to concentrate on the similarities between the TD and TI situation, in particular with respect to SUSY.

  8. 8.

    For a survey of Darboux transformations , also in relation to the factorization method and SUSY quantum mechanics, see [4].

References

  1. F. Cooper, A. Khare, U. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001)

    Book  MATH  Google Scholar 

  2. A. Khare, U. Sukhatme, Phase-equivalent potentials obtained from supersymmetry. J. Phys. A: Math. Gen. 22, 2847 (1989); W.-Y. Keung, U.P. Sukhatme, Q. Wang, T.D. Imbo, Families of strictly isospectral potentials. J. Phys. A: Math. Gen. 22, L987 (1989)

    Google Scholar 

  3. H. Kalka, G. Soff, Supersymmetrie (Teubner, Stuttgart, 1997)

    Book  MATH  Google Scholar 

  4. H.C. Rosu, Short survey of Darboux transformations (1999). arXiv:quant-ph/9809056v3

  5. G. Reinisch, Nonlinear quantum mechanics. Physica A 206, 229–252 (1994)

    Google Scholar 

  6. G. Reinisch, Classical position probability distribution in stationary and separable quantum systems. Phys. Rev. A 56, 3409 (1997)

    Article  ADS  Google Scholar 

  7. E. Madelung, Quantentheorie in hydrodynamischer Form. Z. Phys. 40, 322 (1927)

    Google Scholar 

  8. D. Schuch, Riccati and Ermakov equations in time-dependent and time-independent quantum systems. SIGMA 4, 043, 16 pp (2008). arXiv:0805.1687

  9. R.A. Lee, Quantum ray equations. J. Phys. A: Math. Gen. 15, 2761–2774 (1982)

    Google Scholar 

  10. R.S. Kaushal, Quantum analogue of Ermakov systems and the phase of the quantum wave function. Int. J. Theor. Phys. 40, 835–847 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. R.S. Kaushal, D. Parashar, Can quantum mechanics and supersymmetric quantum mechanics be the multidimensional Ermakov theories? J. Phys. A: Math. Gen. 29, 889–893 (1996)

    Google Scholar 

  12. H.J. Korsch, H. Laurent, Milne’s differential equation and numerical solutions of the Schrödinger equation. I. Bound-state energies for single- and double-minimum potentials. J. Phys. B: At. Mol. Phys. 14, 4213 (1981)

    Google Scholar 

  13. H.J. Korsch, H. Laurent, R. Möhlenkamp, Milne’s differential equation and numerical solutions of the Schrödinger equation. II. Complex energy resonance states. J. Phys. B: At. Mol. Phys. 15, 1 (1982)

    Google Scholar 

  14. D. Baye, G. Lévai, J.M. Sparenberg, Phase-equivalent complex potentials. Nucl. Phys. A 599, 435–456 (1996)

    Article  ADS  MATH  Google Scholar 

  15. A.A. Andrianov, M.V. Ioffe, F. Cannata, J.P. Dedonder, Quantum mechanics with complex superpotentials and real energy spectra. Int. J. Mod. Phys. A 14, 2675–2688 (1999). arXiv:quant-ph/9806019

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. B. Bagchi, S. Mallik, C. Quesne, Generating complex potentials with real eigenvalues in supersymmetric quantum mechanics. Int. J. Mod. Phys. A 16, 2859 (2001). arXiv:quant-ph/0102093

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. F. Cannata, G. Junker, J. Trost, Schrödinger operators with complex potential but real spectrum. Phys. Lett. A 246, 219–226 (1998). arXiv:quant-ph/9805085

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. D.J. Fernández, R. Muñoz, A. Ramos, Second order SUSY transformations with ‘complex energies’. Phys. Lett. A 308, 11–16 (2003). arXiv:quant-ph/0212026

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. O. Rosas-Ortiz, R. Muñoz, Non-Hermitian SUSY hydrogen-like Hamiltonians with real spectra. J. Phys. A: Math. Gen. 36, 8497 (2003). arXiv:quant-ph/0302190

  20. O. Rosas-Ortiz, Gamow vectors and supersymmetric quantum mechanics. Rev. Mex. Fis. 53(S2), 103–109 (2007). arXiv:0810.2283

    MathSciNet  MATH  Google Scholar 

  21. N. Fernández-García, O. Rosas-Ortiz, Optical potentials using resonance states in supersymmetric quantum mechanics. J. Phys. Conf. Ser. 128, 012044 (2008)

    Article  Google Scholar 

  22. N. Fernández-García, O. Rosas-Ortiz, Gamow–Siegert functions and Darboux-deformed short range potentials. Ann. Phys. 323, 1397–1414 (2008). arXiv:0810.5597

  23. C.M. Bender, S. Boettcher, Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. E. Schrödinger, A method of determining quantum-mechanical eigenvalues and eigenfunctions. Proc. R. Irish Acad. A 46, 9–16 (1940)

    MathSciNet  MATH  Google Scholar 

  25. P.A.M. Dirac, The Principles of Quantum Mechanics, 2nd edn. (Clarendon, Oxford, 1935)

    MATH  Google Scholar 

  26. V. Fock, Konfigurationsraum und zweite Quantelung. Z. Phys. 75, 622–647 (1932)

    Article  ADS  MATH  Google Scholar 

  27. B. Mielnik, O. Rosas-Ortiz, Factorization: little or great algorithm? J. Phys. A: Math. Gen. 37, 10007–10035 (2004)

    Google Scholar 

  28. O. Rosas-Ortiz, O. Castaños, D. Schuch, New supersymmetry-generated complex potentials with real spectra. J. Phys. A: Math. Theor. 48, 445302 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Schuch .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schuch, D. (2018). Time-Independent Schrödinger and Riccati Equations. In: Quantum Theory from a Nonlinear Perspective . Fundamental Theories of Physics, vol 191. Springer, Cham. https://doi.org/10.1007/978-3-319-65594-9_3

Download citation

Publish with us

Policies and ethics