Skip to main content

Transition to Volume II

  • Chapter
  • First Online:
Elements of Neurogeometry

Part of the book series: Lecture Notes in Morphogenesis ((LECTMORPH))

  • 838 Accesses

Abstract

This final chapter describes the transition to the mathematical themes that will be developed in the second volume. (i) The explicit calculation of the elements of the sub-Riemannian geometry of the \(\mathbb {V}_\mathrm{J}\) model using the tools of control theory: geodesics , unit sphere, wave front, caustic , cut locus, conjugate points, and so on. (ii) The more natural model \(\mathbb {V}_\mathrm{S}\), constructed on SE(2) itself (which is the principal bundle associated with \(\mathbb {V}_\mathrm{J}\)). SE(2) is no longer nilpotent. Its ‘nilpotentization’, which defines its ‘tangent cone’ at the origin, is isomorphic to the polarized Heisenberg group, , but globally it has a very different sub-Riemannian geometry. (iii) As far as the models model a functional architecture of connections between neurons which act as filters, the natural mathematical framework for low-level visual perception is the one in which non-commutative harmonic analysis on the group SE(2) is related to its sub-Riemannian geometry. (iv) The stochastic interpretation of the variational models leads to advection–diffusion algorithms described by a Fokker–Planck equation which can be calculated explicitly for the \(\mathbb {V}_\mathrm{J}\) model (while the calculation in \(\mathbb {V}_\mathrm{S}\) remains very complicated). Such techniques belong to the general theory of the heat kernel for the hypoelliptic Laplacians of sub-Riemannian manifolds. (v) One can interpolate between \(\mathbb {V}_\mathrm{J}\) and \(\mathbb {V}_\mathrm{S}\) using a continuous family of sub-Riemannian models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Named after Robert Brown.

References

  1. Brockett, R.: Control Theory and Singular Riemannian Geometry. Springer, Berlin, New York (1981)

    MATH  Google Scholar 

  2. Montgomery, R.: A Tour of Subriemannian Geometries, Their Geodesics and Applications. American Mathematical Society (2002)

    Google Scholar 

  3. Strichartz, R.S.: Sub-Riemannian geometry. J. Differ. Geom. 24, 221–263 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ge, Z.: Horizontal path spaces and Carnot-Carathéodory metrics. Pacific J. Math. 161(2), 255–286 (1993)

    Google Scholar 

  5. Hammenstädt, U.: Some regularity in Carnot-Carathéodory metrics. J. Differ. Geom. 32, 192–201 (1991)

    Google Scholar 

  6. Beals, R., Gaveau, B., Greiner, P.C.: Hamilton-Jacobi theory and the heat kernel on Heisenberg groups. Journal de Mathématiques Pures et Appliquées 79(7), 633–689 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gaveau, B.: Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents. Acta Mathematica 139, 96–153 (1977)

    Article  MATH  Google Scholar 

  8. Agrachev, A.A., Sachkov, Y.: Control Theory from the Geometric Viewpoint. Springer (2004)

    Google Scholar 

  9. Agrachev, A.A., Gamkrelidze, R.V.: The Pontryagin maximum principle \(50\) years later. In: Proceedings of the Steklov Mathematical Institute, Dynamical Systems: Modeling, Optimization, and Control, pp. S4–S12 (2006)

    Google Scholar 

  10. Petitot, J., (with a contribution of Tondut, Y.): Vers une Neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux. Mathématiques, Informatique et Sciences Humaines 145, 5–101 (1999)

    Google Scholar 

  11. Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24(3), 307–326 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mitchell, J.: On Carnot-Carathéodory metrics. J. Differ. Geom. 21, 35–45 (1985)

    Article  MATH  Google Scholar 

  13. Rothschild, L.P., Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Mathematica 137, 247–320 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  14. Margulis, G.A., Mostow, G.D.: Some remarks on the definition of tangent cones in a Carnot-Carathéodory space. Journal d’Analyse Mathématique 80, 299–317 (2000)

    Article  MATH  Google Scholar 

  15. Bellaïche, A.: The tangent space in sub-Riemannian geometry. In: Bellaïche, A., Risler, J. (eds.) Sub-Riemannian geometry, pp. 4–78. Basel, Birkhäuser (1996)

    Chapter  Google Scholar 

  16. Moiseev, I., Sachkov, Y.: Maxwell Strata in sub-Riemannian problem on the group of motion of a plane. ESAIM: Control. Optim. Calc. Var. 16(2), 380–399 (2010)

    Google Scholar 

  17. Duits, R., Ghosh, A., Dela Haije, T., Sachkov, Y.: Cuspless sub-Riemannian geodesics within the Euclidean motion group \( SE\left( d\right) \). In: Citti, G., Sarti, A. (eds.) Neuromathematics of Vision, pp. 173–215. Springer, Berlin (2014)

    Google Scholar 

  18. Mumford, D.: Elastica and computer vision. In: Bajaj, C. (ed.) Algebraic Geometry and Applications, pp. 491–506. Springer, Heidelberg (1992)

    Google Scholar 

  19. Sachkov, Y.L.: Conjugate points in the Euler elastica problem. J. Dyn. Control Syst. 14(3), 409–439 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Boscain, U., Duits, R., Rossi, F., Sachkov, Y.: Curve cuspless reconstruction via sub-Riemannian geometry. arXiv:1203.3089v4 (2013)

  21. Sanguinetti, G.: Invariant models of vision between phenomenology, image statistics and neurosciences. Montevideo University, Thesis (2011)

    Google Scholar 

  22. Hulanicki, A.: The distribution of energy in the Brownian motion in the Gaussian field and analytic hypoellipticity of certain subelliptic operators on the Heisenberg group. Studia Mathematica 56(2), 165–173 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  23. Agrachev, A.A., Boscain, U., Gauthier, J.-P., Rossi, F.: The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Anal. 256, 2621–2655 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zahaf, M.B., Manchon, D.: Confluence of singularities of differential equations: a Lie algebra contraction approach, https://hal.archives-ouvertes.fr/hal-00292676, 2008

  25. Petitot, J.: Neurogeometry of \(V1\) and Kanizsa contours. Axiomathes 13, 347–363 (2003)

    Article  Google Scholar 

  26. Petitot, J.: Neurogéométrie des architectures fonctionnelles de la vision. In: Mathématiques et Vision, Journée annuelle de la SMF, pp. 69–128 (2006)

    Google Scholar 

  27. Petitot, J.: Neurogeometry of neural functional architectures. Chaos, Solitons & Fractals 50, 75–92 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. Petitot, J.: Neurogéométrie de la vision. Modèles mathématiques et physiques des architectures fonctionnelles. Les Éditions de l’École Polytechnique, Distribution Ellipses, Paris (2008)

    Google Scholar 

  29. Kellman, P.J., Shipley, T.F.: A theory of visual interpolation in object perception. Cogn. Psychol. 23, 141–221 (1991)

    Article  Google Scholar 

  30. Toet, A., Blom, J., Koenderink, J.J.: The construction of a simultaneous functional order in nervous systems, I. Biol. Cybern. 57, 115–125 (1987)

    Article  MATH  Google Scholar 

  31. Sarti, A., Citti, G., Petitot, J.: On the symplectic structure of the primary visual cortex. Biol. Cybern. 98(1), 33–48 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. Petitot, J.: Théorie des singularités et équations de diffusion, pp. 89–107. Gazette des Mathé maticiens, René Thom (2004)

    Google Scholar 

  33. Petitot, J.: Morphological eidetics for phenomenology of perception. In: Petitot, J., Varela, F.J., Roy, J.-M., Pachoud, B. (eds.) Naturalizing Phenomenology: Issues in Contemporary Phenomenology and Cognitive Science, pp. 330–371. Stanford University Press, Stanford (1999)

    Google Scholar 

  34. Petitot, J.: Neurogéométrie et phénoménologie de la perception. In: Bouveresse, J. Rosat, J.-J. (eds.) Philosophie de la Perception, Collège de France–Odile Jacob, pp. 53–76. Paris (2003)

    Google Scholar 

  35. Koenderink, J.J.: The brain a geometry engine. Psychol. Res. 52, 122–127 (1990)

    Article  Google Scholar 

  36. Dehaene, S., Brannon, E.M.: Space, time, and number: a Kantian research program. Trends Cogn. Sci. Spec. 14(12), 517–519 (2010)

    Google Scholar 

  37. O’Keefe, J.: Immanuel Kant: pioneer neuroscientist, public lecture. Royal Institution of Great Britain, London, June 2 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Petitot .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petitot, J. (2017). Transition to Volume II. In: Elements of Neurogeometry. Lecture Notes in Morphogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-65591-8_6

Download citation

Publish with us

Policies and ethics