Skip to main content

Functional Architectures II: Horizontal Connections and Contact Structure

  • Chapter
  • First Online:
  • 855 Accesses

Part of the book series: Lecture Notes in Morphogenesis ((LECTMORPH))

Abstract

This chapter studies the second component of the functional architecture of primary visual areas , namely what are called cortico-cortical ‘horizontal’ connections. They join together neurons that detect orientations at different points which are parallel, and even approximately coaxial. This coaxial ‘parallel transport’ has been confirmed by psychophysical experiments on what David Field, Anthony Hayes, , and Robert Hess called the association field. To a first approximation, coaxial parallel transport implements what is known in differential geometry as the contact structure of the fibre bundle \(\mathbb {V}_\mathrm{J}\) of 1 -jets of curves in the plane. It is invariant under the action of the group SE(2) of isometries of the Euclidean plane. The contact structure is associated with a non-commutative group structure on \(\mathbb {V}_\mathrm{J}\), the action of SE(2) then being identified with the left-translations of \(\mathbb {V}_\mathrm{J}\) on itself. This group is isomorphic to the ‘polarized’ Heisenberg group. It is a nilpotent group belonging to the class of what are called Carnot groups. The definition of an SE(2)-invariant metric on the contact planes thus defines what is called a sub-Riemannian geometry. Using this, one obtains a natural explanation for the phenomenon whereby the visual system constructs long-range illusory contours. For illusory contours with curvature, this leads to variational models. At the end of the 1980s, David Mumford already proposed a first model, defined in the plane \(\mathbb {R}^{2}\) of the visual field, which minimized a certain functional of curve length and curvature . We propose a model in the contact bundle \(\mathbb {V}_\mathrm{J}\) that rests on the hypothesis that illusory contours are sub-Riemannian geodesics. The Cartan ‘prolongation’ of this structure, called the Engel structure, corresponds to the 2 -jets of curves in the plane \(\mathbb {R}^{2}\). It must be taken into account if we want to report on the experimental data showing that, in the primary visual system, there exist not only orientation detectors (tangents and 1-jets), but also curvature detectors (osculating circles and 2-jets). We then point out a few properties of the functional architecture of areas V2, V4 (for colour), V5, and MT (for motion). We also discuss Swindale’s model for directions. Finally, we briefly describe the genetic control of the neural morphogenesis and axon guidance of the functional architectures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Recall that \(\log \left( 0\right) =-\infty \), so if \(p\in \left[ 0,1\right] \) is small, then \(-\log \left( p\right) \) is a large positive number.

  2. 2.

    \(90\times 90\) is the number of ways to position the little square, 1/2 is the probability of black or white for each pixel, \(\left( 1/2\right) \!{}^{100}\) is the probability that the 100 pixels of the small square are black, and \((1/2){}^{900}\) is the probability that the 900 pixels remaining in the large square are white.

  3. 3.

    Named after George Boole.

  4. 4.

    In the rest of this section, A and B will denote the ends of curves.

  5. 5.

    The reader should not confuse \(\pi \) the projection \(\pi :R\times P\rightarrow R\) and \(\pi \) the component of a tangent vector t.

  6. 6.

    If \(\omega _{1}\) and \(\omega _{2}\) are two 1-forms, \(\omega _{2} \wedge \omega _{1}=-\omega _{1} \wedge \omega _{2}\) (and hence \(\omega \wedge \omega =-\omega \wedge \omega =0\)), and if \(\omega =\mathrm{d}f\) is the differential of a function f(xyz), then \(\mathrm{d}\omega =\mathrm{d}^{2}f=0\).

  7. 7.

    The term ‘pacman’ comes from a famous Japanese video game in which a disc with a variable angular sector representing a stylized mouth (the ‘pac-man’) has to find its way through a maze while ‘eating pac-dots’ and at the same time avoiding enemies.

  8. 8.

    Friedrich Engel was one of the main disciples and collaborators of Sophus Lie.

  9. 9.

    There are some technical problems in the definition of the energy, but these are well known in signal theory. To obtain good results, the even/odd filters must be refined, for example, taking the Hilbert transform of \(G_{2}\) instead of \(G_{3} \).

  10. 10.

    For an introduction to structuralism in biology from Waddington to Thom, see [78].

References

  1. Eysel, U.: Turning a corner in vision research. Nature 399, 641–644 (1999)

    Article  Google Scholar 

  2. Alexander, D.M., Bourke, P.D., Sheridan, P., Konstandatos, O., Wright, J.J.: Intrinsic connections in tree shrew \(V1\) imply a global to local mapping. Vision Res. 44, 857–876 (2004)

    Article  Google Scholar 

  3. Ts’o, D.Y., Gilbert, C.D., Wiesel, T.N.: Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J. Neurosci. 6(4), 1160–1170 (1986)

    Google Scholar 

  4. Das, A., Gilbert, C.D.: Long range horizontal connections and their role in cortical reorganization revealed by optical recording of cat primary visual cortex. Nature 375, 780–784 (1995)

    Article  Google Scholar 

  5. Malach, R., Amir, Y., Harel, M., Grinvald, A.: Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proc. Nat. Acad. Sci. 90, 10469–10473 (1993)

    Google Scholar 

  6. Bosking, W.H., Zhang, Y., Schofield, B., Fitzpatrick, D.: Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17(6), 2112–2127 (1997)

    Google Scholar 

  7. Mitchison, G., Crick, F.: Long axons within the striate cortex: their distribution, orientation, and patterns of connections. Proc. Nat. Acad. Sci. 79, 3661–3665 (1982)

    Google Scholar 

  8. Rockland, K.S., Lund, J.S.: Widespread periodic intrinsic connections in the tree shrew visual cortex. Science 215, 532–534 (1982)

    Article  Google Scholar 

  9. Rockland, K.S., Lund, J.S.: Intrinsic laminar lattice connections in the primate visual cortex. J. Comp. Neurol. 216(3), 303–318 (1993)

    Article  Google Scholar 

  10. Grinvald, A., Lieke, E.E., Frostig, R.D., Hildesheim, R.: Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J. Neurosci. 14(5), 2545–2568 (1994)

    Google Scholar 

  11. Field, D.J., Hayes, A., Hess, R.F.: Contour integration by the human visual system: evidence for a local ‘association field’. Vision Res. 33(2), 173–193 (1993)

    Article  Google Scholar 

  12. Kapadia, M.K., Ito, M., Gilbert, C.D., Westheimer, G.: Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in \(V1\) of alert monkeys. Neuron 15, 843–856 (1995)

    Article  Google Scholar 

  13. Kapadia, M.K., Westheimer, G., Gilbert, C.D.: Dynamics of spatial summation in primary visual cortex of alert monkey. Proc. Nat. Acad. Sci. 96(21), 12073–12078 (1999)

    Google Scholar 

  14. Kovács, I., Julesz, B.: A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation. Proc. Nat. Acad. Sci. 90, 7495–7497 (1993)

    Google Scholar 

  15. Sajda, P., Han, F.: Perceptual salience as novelty detection in cortical pinwheel space. In: Proceedings of the First International IEEE EMBS Conference on Neural Engineering (2003)

    Google Scholar 

  16. Desolneux, A., Moisan, L., Morel, J.-M.: From Gestalt Theory to Image Analysis: A Probabilistic Approach, Interdisciplinary Applied Mathematics, vol. 34. Springer, Heidelberg (2008)

    Google Scholar 

  17. Kourtzi, Z., Tolias, A.S., Altmann, C.F., Augath, M., Logothetis, N.K.: Integration of local features into global shapes: monkey and human fMRI studies. Neuron 37, 333–346 (2003)

    Article  Google Scholar 

  18. Georges, S., Seriès, P., Frégnac, Y., Lorenceau, J.: Orientation dependent modulation of apparent speed: psychophysical evidence. Vision Res. 42, 2757–2772 (2002)

    Article  Google Scholar 

  19. Georges, S., Seriès, P., Lorenceau, J.: Contrast dependence of high-speed apparent motion. http://www.perceptionweb.com/ecvp00/0300.html (2000)

  20. Frégnac, Y., Baudot, P., Chavane, F., Lorenceau, J., Marre, O., Monier, C., Pananceau, M., Carelli, P., Sadoc, G.: Multiscale functional imaging in \(V1\) and cortical correlates of apparent motion. In: Masson, G.S. Ilg, U.J. (eds.) Dynamics of Visual Motion Processing. Neuronal, Behavioral, and Computational Approaches, pp. 73–94. Springer, Berlin (2010)

    Google Scholar 

  21. Seriès, P., Georges, S., Lorenceau, J., Frégnac, Y.: Orientation dependent modulation of apparent speed: a model based on the dynamics of feed-forward and horizontal connectivity in \(V1\) cortex. Vision Res. 42, 2781–2797 (2002)

    Article  Google Scholar 

  22. Alais, D., Lorenceau, J., Arrighi, R., Cass, J.: Contour interactions between pairs of Gabors engaged in binocular rivalry reveal a map of the association field. Vision Res. 46, 1473–1487 (2006)

    Article  Google Scholar 

  23. Paradis, A.-L., Morel, S., Seriès, P., Lorenceau, J.: Speeding up the brain: when spatial facilitation translates into latency shortening. Frontiers Human Neurosci. 6, 330 (2012)

    Article  Google Scholar 

  24. Petitot, J., Tondut, Y.: Géométrie de contact et champ d’association dans le cortex visuel. CREA reports # 9725, École Polytechnique, Paris (1997)

    Google Scholar 

  25. Lee, T.S., Nguyen, M.: Dynamics of subjective contour formation in the early visual cortex. Proc. Nat. Acad. Sci. 98(4), 1907–1911 (2001)

    Google Scholar 

  26. Polat, U., Sagi, D.: Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiment. Vision Res. 33(7), 993–999 (1993)

    Article  Google Scholar 

  27. Gilbert, C.D., Das, A., Ito, M., Kapadia, M., Westheimer, G.: Spatial integration and cortical dynamics. Proc. Nat. Acad. Sci. 93, 615–622 (1996)

    Google Scholar 

  28. Zucker, S.W., David, C., Dobbins, A., Iverson, L.: The organization of curve detection: coarse tangent fields and fine spline covering. In: Proceedings of the COST-13 Workshop (European Cooperation in Science and Technology), Bonas, France, 1988. Republished in Simon, J.C. (ed.) From Pixels to Features, pp. 75–90. North Holland, New York (1989)

    Google Scholar 

  29. Parent, P., Zucker, S.W.: Trace inference, curvature consistency, and curve detection. IEEE Trans. Pattern Anal. Mach. Intell. II(8), 823–839 (1989)

    Article  Google Scholar 

  30. Grossberg, S., Mingolla, E.: Neural dynamics of form perception: boundary completion, illusory figures and neon color spreading. Psychol. Rev. 92, 173–211 (1985)

    Article  Google Scholar 

  31. Fitzpatrick, D.: Seeing beyond the receptive field in primary visual cortex. Curr. Opin. Neurobiol. 10, 438–443 (2000)

    Article  Google Scholar 

  32. Wright, J.J., Alexander, D.M., Bourke, P.D.: Contribution of lateral interactions in \(V1\) to organization of response properties. Vision Res. 46, 2703–2720 (2006)

    Article  Google Scholar 

  33. Jancke, D., Chavane, F., Naaman, S., Grinvald, A.: Imaging cortical correlates of illusion in early visual cortex. Nature 428, 423–426 (2004)

    Article  Google Scholar 

  34. Rangan, A.V., Cai, D., McLaughlin, D.W.: Modeling the spatiotemporal cortical activity associated with the line-motion illusion in primary visual cortex. Proc. Nat. Acad. Sci. 102(52), 18793–18800 (2005)

    Google Scholar 

  35. Gilbert, C.D., Wiesel, T.N.: Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J. Neurosci. 9(7), 2432–2442 (1989)

    Google Scholar 

  36. Gilbert, C.D.: Horizontal integration and cortical dynamics. Neuron 9, 1–13 (1992)

    Article  Google Scholar 

  37. Berthoz, A.: La simplexité. Odile Jacob, Paris (2009)

    Google Scholar 

  38. Petitot, J.: La simplexité de la notion géométrique de jet. In: Berthoz, A., Petit, J.-L. (eds). Simplexité-Complexité. Coll‘ege de France, OpenEdition Books, Paris (2014)

    Google Scholar 

  39. Ullman, S.: Filling in the gaps: the shape of subjective contours and a model for their generation. Biol. Cybern. 25, 1–6 (1976)

    Google Scholar 

  40. Petitot, J., (with a contribution of Tondut, Y.): Vers une Neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux. Mathématiques, Informatique et Sciences Humaines 145, 5–101 (1999)

    Google Scholar 

  41. Bryant, R., Griffiths, P.: Reduction for constrained variational problems and \(\int {\kappa ^{2}}{\rm d}s/2\). Am. J. Math. 108, 525–570 (1986)

    Google Scholar 

  42. Ben-Shahar, O., Zucker, S.: Geometrical computations explain projection patterns of long-range horizontal connections in visual cortex. Neural Comput. 16(3), 445–476 (2004)

    Article  MATH  Google Scholar 

  43. Ben-Shahar, O., Huggins, P.S., Izo, T., Zucker, S.: Cortical connections and early visual function: intra- and inter-columnar processing. In: Petitot. J., Lorenceau, J. (eds.) Neurogeometry and Visual Perception. J. Physiol. Paris 97, 191–208 (2003)

    Google Scholar 

  44. Sigman, M., Cecchi, G.A., Gilbert, C.D., Magnasco, M.O.: On a common circle: natural scenes and Gestalt rules. Proc. Nat. Acad. Sci. 98(4), 1935–1940 (2001)

    Google Scholar 

  45. Mallat, S., Peyré, G.: Traitements géométriques des images par bandelettes. In: Journée annuelle de la SMF, 24 June 2006, Mathématiques et Vision, pp. 39–67 (2006)

    Google Scholar 

  46. Le Pennec, E., Mallat, S.: Sparse geometrical image representation with bandelets. In: IEEE Transactions on Image Processing (2003)

    Google Scholar 

  47. Ts’o, D.Y., Zarella, M., Burkitt, G.: Whither the hypercolumn? J. Physiol. 587(12), 2791–2805 (2009)

    Article  Google Scholar 

  48. Roe, A.W.: Modular complexity of area \(V2\) in the macaque monkey. In: Kaas, J.H., Collins, C.E. (eds). The Primate Visual System, Chap. 5, pp. 109–138. CRC Press LLC, Boca Raton, FL (2003)

    Google Scholar 

  49. Sit, Y.F., Miikkulainen, R.: Computational prediction on the receptive fields and organization of \(V2\) for shape processing. Neural Comput. 21(3), 762–785 (2009)

    Article  MATH  Google Scholar 

  50. Lu, H.D., Chen, G., Tanigawa, H., Roe, A.W.: A motion direction map in macaque \(V2\). Neuron 68, 1–12 (2010)

    Article  Google Scholar 

  51. Peterhans, E., von der Heydt, R.: Subjective contours: bridging the gap between psychophysics and psychology. Trends Neurosci. 14(3), 112–119 (1991)

    Article  Google Scholar 

  52. von der Heydt, R., Peterhans, E.: Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity. J. Neurosci. 9(5), 1731–1748 (1989)

    Google Scholar 

  53. Sheth, B.R., Sharma, J., Rao, S.C., Sur, M.: Orientation maps of subjective contours in visual cortex. Nature 274, 2110–2115 (1996)

    Google Scholar 

  54. Zeki, S.: A Vision of the Brain. Wiley-Blackwell, Oxford (1993)

    Google Scholar 

  55. Thom, R.: Esquisse d’une Sémiophysique. InterEditions, Paris (1988)

    Google Scholar 

  56. Petitot, J.: ‘Le hiatus entre le logique et le morphologique’. Prédication et perception. In: Wildgen, W., Brandt, P.A. (eds). Semiosis and Catastrophes. René Thom’s Semiotic Heritage, pp. 141–166. Peter Lang, Bern (2010)

    Google Scholar 

  57. Shapley, R., Hawken, M.J.: Color in the cortex: single- and double-opponents cells. Vision Res. 51, 701–717 (2011)

    Article  Google Scholar 

  58. Tanigawa, H., Lu, H.D., Roe, A.W.: Functional organization for color and orientation in macaque \(V4\). Nature Neurosci. 13, 1542–1548 (2010)

    Google Scholar 

  59. Thompson, E., Palacios, A., Varela, F.: Ways of coloring: comparative color vision as a case study in cognitive science. Behav. Brain Sci. 15, 1–74 (1992)

    Google Scholar 

  60. Petitot, J.: Morphodynamical enaction: the case of color. Biol. Res. (In: Bacigalupo, J., Palacios, A.G. (eds). A Tribute to Francisco Varela) 36(1), 107–112 (2003)

    Google Scholar 

  61. Gur, M., Snodderly, D.M.: Direction selectivity in \(V1\) of alert monkeys: evidence for parallel pathways for motion processing. J. Physiol. 585(2), 383–400 (2007)

    Article  Google Scholar 

  62. Born, R.T., Bradley, D.C.: Structure and function of visual area \(MT\). Annu. Rev. Neurosci. 28, 157–189 (2005)

    Article  Google Scholar 

  63. DeAngelis, G.C., Newsome, W.T.: Organization of disparity-selective neurons in macaque area MT. J. Neurosci. 19(4), 1398–1415 (1999)

    Google Scholar 

  64. Tanaka, S., Shinbata, H.: Mathematical model for self-organization of direction columns in the primate middle temporal area. Bio. Cybern. 70, 227–234 (1994)

    Article  MATH  Google Scholar 

  65. Swindale, N.V., Grinvald, A., Shmuel, A.: The spatial pattern of response magnitude and selectivity for orientation and direction in cat visual cortex. Cereb. Cortex 13(3), 225–235 (2003)

    Article  Google Scholar 

  66. Petitot, J.: Éléments de théorie des singularités. http://jean.petitot.pagesperso-orange.fr/ArticlesPDF_new/Petitot_Sing.pdf (1982)

  67. Prochiantz, A.: Machine-esprit. Odile Jacob, Paris (2001)

    Google Scholar 

  68. Chedotal, A., Richards, L.J.: Wiring the Brain: The Biology of Neuronal Guidance. In: Cold Spring Harbor Perspectives in Biology. http://cshperspectives.cshlp.org (2010)

  69. Kolodkin, A.L., Tessier-Lavigne, M.: Mechanisms and molecules of neuronal wiring: a primer. In: Cold Spring Harbor Perspectives in Biology. http://cshperspectives.cshlp.org (2011)

  70. GeneCards: Human Gene Compendium. Weizmann Institute. www.genecards.org

  71. Reese, B.E.: Development of the retina and optic pathway. Vision Res. 51, 613–632 (2011)

    Article  Google Scholar 

  72. Baye, L.M., Link, B.A.: Nuclear migration during retinal development. Brain Res. 2008, 29–36 (1992)

    Google Scholar 

  73. Ohsawa, R., Kageyama, R.: Regulation of retinal cell fate specification by multiple transcription factors. Brain Res. 1192, 90–98 (2008)

    Article  Google Scholar 

  74. Martins, R.A.P., Pearson, R.A.: Control of cell proliferation by neurotransmitters in the developing vertebrate retina. Brain Res. 1192, 37–60 (2008)

    Article  Google Scholar 

  75. Li, S., Mo, Z., Yang, X., Price, S.M., Shen, M.M., Xiang, M.: Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors. Neuron 43, 795–807 (2004)

    Article  Google Scholar 

  76. Schulte, D., Bumsted-O’Brien, K.M.: Molecular mechanisms of vertebrate retina development: Implications for ganglion cell and photorecptor patterning. Brain Res. 1192, 151–164 (2008)

    Article  Google Scholar 

  77. Feldheim, D.A., O’Leary, D.D.: Visual map development: bidirectional signaling, bifunctional guidance, molecules and competition. Cold Spring Harb. Perspect. Biol. http://cshperspectives.cshlp.org (2010)

  78. Petitot, J.: Morphogenèse du Sens, Presses Universitaires de France, Paris, 1985. English Translation: Manjali, F. Morphogenesis of Meaning. Bern, Peter Lang (2003)

    Google Scholar 

  79. McLaughlin, T., Torborg, C.L., Feller, M.B., O’Leary, D.D.M.: Retinotopic map refinement requires spontaneous retinal wave during a brief period of development. Neuron 40, 1147–1160 (2003)

    Article  Google Scholar 

  80. Scicolone, G., Ortalli, A.L., Carri, N.G.: Key roles of Ephs and ephrins in retinotectal topographic map formation. Brain Res. Bull. 79, 227–247 (2009)

    Article  Google Scholar 

  81. Luo, L., Flanagan, J.G.: Development of continuous and discrete neural maps. Neuron 56, 284–300 (2007)

    Article  Google Scholar 

  82. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. B, Bio. Sci. 237(641), 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  83. Turing, A.M., Wardlaw, C.W.: A diffusion reaction theory of morphogenesis in plants. New Phytol. 52, 40–47. Also in Collected Works of A.M. Turing, P.T. Saunders, Amsterdam 1953, 37–47 (1952)

    Google Scholar 

  84. Cai, A.Q., Landman, K.A., Hughes, B.D.: Modelling directional guidance and motility regulation in cell migration. Bull. Math. Biol. 68, 25–52 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Petitot .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petitot, J. (2017). Functional Architectures II: Horizontal Connections and Contact Structure. In: Elements of Neurogeometry. Lecture Notes in Morphogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-65591-8_5

Download citation

Publish with us

Policies and ethics