Skip to main content

Functional Architecture I: The Pinwheels of V1

  • Chapter
  • First Online:
  • 1042 Accesses

Part of the book series: Lecture Notes in Morphogenesis ((LECTMORPH))

Abstract

This chapter presents a first set of experimental data on the functional architecture of area V1 and, in particular, on what is referred to as its ‘pinwheel’ structure. Most of the so-called simple neurons in V1 detect positions and orientations in the visual field, with those detecting the various orientations for each position being grouped together into functional micromodules that can be defined anatomically and are called orientation hypercolumns or pinwheels. In this sense, V1 implements a 2D discrete approximation of the 3D fibre bundle \(\pi :\mathbb {V}=R\times \mathbb {P} ^{1}\rightarrow R\), with the retinal plane R as its base space and the projective line \(\mathbb {P}^{1}\) of orientations in the plane as its fibre. V1 then appears to be a field of orientations in a plane (called an ‘orientation map’ by neurophysiologists), a field whose singularities are the centres of the pinwheels . This chapter studies these singularities, gives their normal forms , and specifies the distortions and defects of their networks. One way to model such orientation maps is to treat them as phase fields, analogous to those encountered in optics, whose singularities have been thoroughly analyzed by specialists such as Michael Berry. These fields are superpositions of solutions to the Helmholtz equation, whose wave number depends in a precise manner on the mesh of the pinwheel lattice. They enable the construction of very interesting models, such as those proposed by Fred Wolf and Theo Geisel. These are explained here. However, in these models of phase fields , orientation selectivity must vanish at singularities. Yet many experimental results show that this is not the case. The chapter thus presents another model based on the geometric notion of blow-up. It also explains how the fibration that models the orientation variable interferes with other fibrations (other visual ‘maps’) that model other variables such as direction , ocular dominance , phase, spatial frequency, or colour. For spatial frequency, it presents the dipole model proposed by Daniel Bennequin. V1 therefore implements fibrations of rather high dimension in two-dimensional layers. This leads to the problem of knowing how to express the independence of these different variables. A plausible hypothesis relies on a transversality principle. The chapter ends with data on two other aspects of neurobiology: (i) the relation between the cerebral hemispheres through callosal connections and (ii) the primary processing of colour in the ‘blobs’ of V1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    When we don’t need to distinguish between R and M, we shall set \(R=M\) and \(\chi =Id\).

  2. 2.

    Van Hooser’s paper also discusses the rat (rodent, nocturnal, laterally placed eyes), the night monkey, also known as the owl monkey or douroucoulis (New World primate, nocturnal, frontally placed eyes), the ferret, etc.

  3. 3.

    In the geometric models of neural functional architectures, there are many problems of terminology. Lexical items such as ‘fibre’, ‘projection’, ‘connection’ are used in different ways by mathematicians and neurophysiologists. In general, the meaning should be clear from the context.

  4. 4.

    Named after Brook Taylor.

  5. 5.

    We could distinguish between the retinal plane R and the cortical layer M (the base space of V) to which it projects. However, to simplify, we shall not do so, considering the retinotopic map \(\chi :R\rightarrow M\) as the identity.

  6. 6.

    The transition from recordings of a few isolated neurons to a visualization of the overall activity of a piece of brain area is analogous to the leap forward in meteorology when recordings made by weather balloons were replaced by satellite imaging. No need for further comment.

  7. 7.

    There are two classes of primates: on the one hand, monkeys and humans, and on the other, the prosimians.

  8. 8.

    For an introduction to simulated annealing, see, for example, the Bourbaki lecture by Robert Azencott [53].

  9. 9.

    For more on such questions of dimensions, the reader could consult my 1982 review [59] and references therein.

  10. 10.

    Given the assumptions of continuity and smoothness, we need consider only connectedness by arcs.

  11. 11.

    Here, the authors use basic theorems of general topology going back to Bolzano, Weierstrass , Heine , Borel, and Lebesgue. For separated topological spaces, the continuous image of a compact (connected) set is compact (connected).

  12. 12.

    Phase singularities are generically points in 2D and lines in 3D because they are specified by two conditions and so have codimension 2 (see below).

  13. 13.

    Named after Carl Gustav Jacob Jacobi.

  14. 14.

    Let \(H_{\varphi }=\left( \begin{array}{cc} a &{} b \\ b &{} c \end{array} \right) \). The eigenvalues are solutions of the quadratic equation \(\text{ Det }\left( H_{\varphi }-\lambda I\right) =0\), which can be written \(\lambda ^{2}-\lambda \left( a+c\right) +\left( ac-b^{2}\right) =0\). The discriminant \(\left( a+c\right) ^{2}-4\left( ac-b^{2}\right) =\left( a-c\right) ^{2}+4b^{2}\) is always non-negative, and the roots are therefore real.

  15. 15.

    \(\left\langle \ {,} \ \right\rangle \) is the natural pairing between vectors and dual covectors. It can also be expressed by a dot.

  16. 16.

    For Hebb’s law, see Sect. 3.6.2.

  17. 17.

    We have already encountered this density \(\pi /\Lambda ^{2} \) in Sect. 4.6.11.

  18. 18.

    We have to use the two variables Z and \(\overline{Z}\) because the functions \(F_{j}\) are not necessarily analytic functions depending only on Z.

  19. 19.

    In the expansion of L, the powers of partial derivatives like \(\left( {\partial }/{\partial x}\right) ^{n}\) mean repeated differentiation \({\partial ^{n}}/{\partial x^{n}}\). The linear PDE \({\partial Z}/{\partial t}=L\left( Z\right) \) for \(L=\mu \) describes exponential damping towards 0 for \(\mu <0\) (stability) and exponential growth for \(\mu >0\) (instability). The PDE \({\partial Z}/{\partial t}=L\left( Z\right) \) for \(L=-\Delta \) is a diffusion equation.

  20. 20.

    For a didactic introduction to non-standard analysis, see, for example, Petitot [93] and the references therein.

  21. 21.

    Rather as in the Kaluza–Klein field theories of physics.

  22. 22.

    I thank Guy Wallet and Michel Berthier for this reference.

  23. 23.

    Lengths are measured in degrees of the visual field.

  24. 24.

    We have already encountered this problem of minimizing the wiring in Sect. 4.4.5.1.

  25. 25.

    For an adequate treatment of this point, one must introduce the rather technical geometric notion of a Lagrangian sub-manifold. We shall say a little more about this in the second volume. Here we only make elementary remarks about the geometry.

  26. 26.

    Recall that the optic nerve contains about 1.5 million axons, so less than a hundredth of the number.

  27. 27.

    On generation and corruption, I, 5, 312b.

  28. 28.

    All the details can be found in René Thom’s two books [118] and [119]. For a didactic introduction, see [130].

  29. 29.

    The pinwheel structure is based on the dichotomy between regular and singular points, but this concerns field lines of the orientation field. Here we are talking about something quite different.

  30. 30.

    Recall (see Sect. 3.2.5 of Chap. 3) that the three kinds of cones in humans are L/M/S, L red, M green, S blue.

References

  1. Lee, T.S., Mumford, D., Romero, R., Lamme, V.A.F.: The role of primary visual cortex in higher level vision. Vision Res. 38, 2429–2454 (1998)

    Article  Google Scholar 

  2. Beaudot, W.H.A., Mullen, K.T.: Orientation selectivity in luminance and color vision assessed using 2D band-pass filtered spatial noise. Vision Res. 45, 687–695 (2005)

    Article  Google Scholar 

  3. Hasboun, D.: neur@nat. http://www.chups.jussieu.fr/ext/neuranat/

  4. Brain. http://thebrain.mcgill.ca

  5. Visual Cortex. http://www.vision.ee.ethz.ch/en/

  6. Vision Web. http://webvision.med.utah.edu

  7. Ungerleider, L.G., Mishkin, M.: Two cortical visual systems. In: Ingle, D.J., Goodale, M.A., Mansfield, R.J.W. (eds). Analysis of Visual Behavior, MIT Press, pp. 549–586. Cambridge, MA (1982)

    Google Scholar 

  8. Wandell, B.A., Dumoulin, S.O., Brewer, A.A.: Visual field maps in human cortex. Neuron 56, 366–383 (2007)

    Article  Google Scholar 

  9. Larsson, J., Heeger, D.J.: Two retinotopic visual areas in human lateral occipital cortex. J. Neurosci. 26(51), 13128–13142 (2006)

    Article  Google Scholar 

  10. Tootell, R.B., Switkes, E., Silverman, M.S., Hamilton, S.L.: Functional anatomy of macaque striate cortex. II retinotopic organization. J. Neurosci. 8(5), 1531–1568 (1988)

    Google Scholar 

  11. Dumoulin, S.O., Wandell, B.A.: Population receptive field estimates in human visual cortex. NeuroImage 39, 647–660 (2008)

    Article  Google Scholar 

  12. Brewer, A.A., Press, W.A., Logothetis, N.K., Wandell, B.A.: Visual areas in macaque cortex measured using functional magnetic resonance imaging. J. Neurosci. 22(23), 10416–10426 (2002)

    Google Scholar 

  13. Hadjikhani, N., Liu, A.K., Dale, A.D., Cavanagh, P., Tootell, R.B.H.: Retinotopy and color sensitivity in human visual cortical area \(V8\). Nat. Neurosci. 1(3), 235–241 (1998)

    Article  Google Scholar 

  14. Hooks, B.M., Chen, C.: Critical periods in the visual system: changing views for a model of experience-dependence plasticity. Neuron 56, 312–326 (2007)

    Google Scholar 

  15. Gur, M., Snodderly, D.M.: Direction selectivity in \(V1\) of alert monkeys: evidence for parallel pathways for motion processing. J. Physiol. 585(2), 383–400 (2007)

    Article  Google Scholar 

  16. Vision. Accessible at http://jeanpetitot.com/Woodruff-Pak_vision.ppt

  17. Alexander, D.M., Sheridan, P., Bourke, P.D., Konstandatos, O., Wright, J.J.: Global and local symmetry of the primary visual cortex: derivation of orientation preference. http://paulbourke.net/papers/visualneuro/

  18. Balasubramanian, M., Polimeni, J., Schwartz, E.L.: The \(V1\)-\(V2\)-\(V3\) complex: quasi conformal dipole maps in primate striate and extra-striate cortex. Neural Networks 15(10), 1157–1163 (2002)

    Article  Google Scholar 

  19. DeAngelis, G.C., Ghose, G.M., Ohzawa, I., Freeman, R.D.: Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons. J. Neurosci. 19(9), 4046–4064 (1999)

    Google Scholar 

  20. Beaudot, W.H.A., Mullen, K.T.: Orientation discrimination in human vision: psychophysics and modeling. Vision Res. 46, 26–46 (2006)

    Article  Google Scholar 

  21. Snippe, H.P., Koenderink, J.J.: Discrimination thresholds for channel-coded systems. Biol. Cybern. 66, 543–551 (1992)

    Article  MATH  Google Scholar 

  22. Ringach, D.L.: Population coding under normalization. Vision Res. 50, 2223–2232 (2010)

    Article  Google Scholar 

  23. Braitenberg, V., Braitenberg, C.: Geometry of orientation columns in the visual cortex. Biol. Cybern. 33, 179–186 (1979)

    Article  MATH  Google Scholar 

  24. Visual system. http://brain.phgy.queensu.ca/pare/assets/Higher%20Processing%20handout.pdf

  25. Lund, J.S., Angelucci, A., Bressloff, P.C.: Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb. Cortex 13(1), 15–24 (2003)

    Article  Google Scholar 

  26. Van Hooser, S.D.: Similarity and diversity in visual cortex: is there a unifying theory of cortical computation? Neuroscientist 13(6), 639–656 (2007)

    Article  Google Scholar 

  27. Hubel, D.H.: Eye, Brain and Vision. Scientific American Library, W.H. Freeman & Co, New York (1988)

    Google Scholar 

  28. Ben-Shahar, O., Zucker, S.: Geometrical computations explain projection patterns of long-range horizontal connections in visual cortex. Neural Comput. 16(3), 445–476 (2004)

    Article  MATH  Google Scholar 

  29. Koenderink, J.J., Van Doorn, A.J.: Representation of local geometry in the visual system. Biol. Cybern. 55, 367–375 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhang, J., Wu, S.: Structure of visual perception. Proc. Natl. Acad. Sci. USA 87, 7819–7823 (1990)

    Google Scholar 

  31. Weliky, M., Bosking, W., Fitzpatrick, D.: A systematic map of direction preference in primary visual cortex. Nature 379, 725–728 (1996)

    Article  Google Scholar 

  32. Bonhöffer, T., Grinvald, A.: Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353, 429–431 (1991)

    Article  Google Scholar 

  33. Ohki, K., Reid, R.C.: Specificity and randomness in the visual cortex. Curr. Opin. Neurobiol. 17(4), 401–407 (2007)

    Article  Google Scholar 

  34. Grinvald, A., Shoham, D., Shmuel, A., Glaser, D., Vanzetta, I., Shtoyerman, E., Slovin, H., Sterkin, A., Wijnbergen, C., Hildesheim, R., Arieli, A.: In-vivo optical imaging of cortical architecture and dynamics, Technical Report GC-AG/99-6, The Weizmann Institute of Science (2001)

    Google Scholar 

  35. Blasdel, G.G., Salama, G.: Voltage sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321, 579–585 (1986)

    Article  Google Scholar 

  36. Crair, M.C., Ruthazer, E.S., Gillespie, D.C., Stryker, M.P.: Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. J. Neurophysiol. 77, 3381–3385 (1997)

    Google Scholar 

  37. Bosking, W.H., Zhang, Y., Schofield, B., Fitzpatrick, D.: Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17(6), 2112–2127 (1997)

    Google Scholar 

  38. Fitzpatrick, D.: The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. Cereb. Cortex 6, 329–341 (1996)

    Article  Google Scholar 

  39. Lund, J.S., Fitzpatrick, D., Humphrey, A.L.: The striate visual cortex of the tree shrew. In: Jones, E.G., Peters, A. (eds). Cerebral Cortex, pp. 157–205. Plenum, New York (1985)

    Google Scholar 

  40. Frégnac, Y., Baudot, P., Chavane, F., Lorenceau, J., Marre, O., Monier, C., Pananceau, M., Carelli, P., Sadoc, G.: Multiscale functional imaging in \(V1\) and cortical correlates of apparent motion. In: Masson, G.S., Ilg, U.J. (eds). Dynamics of Visual Motion Processing. Neuronal, Behavioral, and Computational Approaches, pp. 73–94. Springer, Berlin, New York (2010)

    Google Scholar 

  41. Eysel, U.: Turning a corner in vision research. Nature 399, 641–644 (1999)

    Article  Google Scholar 

  42. Bosking, W.H., Crowley, J.C., Fitzpatrick, D.: Spatial coding of position and orientation in primary visual cortex. Nat. Neurosci. 5(9), 874–882 (2002)

    Article  Google Scholar 

  43. McLoughlin, N., Schiessl, I.: Orientation selectivity in the common marmoset (Callithrix jacchus): The periodicity of orientation columns in \(V1\) and \(V2\). NeuroImage 31, 76–85 (2006)

    Article  Google Scholar 

  44. Niebur, E., Wörgötter, F.: Design principles of columnar organization in visual cortex. Neural Comput. 6, 602–614 (1994)

    Article  Google Scholar 

  45. Xu, X., Bosking, W.H., White, L.E., Fitzpatrick, D., Casagrande, V.A.: Functional organization of visual cortex in the prosimian bush baby revealed by optical imaging of intrinsic signals. J. Neurophysiol. 94, 2748–2762 (2005)

    Article  Google Scholar 

  46. Yu, H., Farley, B.J., Jin, D.Z., Sur, M.: The coordinated mapping of visual space and response features in visual cortex. Neuron 47, 267–280 (2005)

    Article  Google Scholar 

  47. Basole, A., White, L.E., Fitzpatrick, D.: Mapping multiple features in the population response of visual cortex. Lett. Nat. 423(26), 986–990 (2003)

    Article  Google Scholar 

  48. Baxter, W.T., Dow, B.M.: Horizontal organization of orientation-sensitive cells in primate visual cortex. Biol. Cybern. 61, 171–182 (1989)

    Article  Google Scholar 

  49. Goodhill, G.J.: Contributions of theoretical modeling to the understanding of neural map development. Neuron 56, 301–311 (2007)

    Article  Google Scholar 

  50. Nöckel, J.: Gradient field plots in Mathematica. http://pages.uoregon.edu/noeckel/computernotes/Mathematica/fieldPlots.html

  51. Chapman, B., Stryker, M.P., Bonhöffer, T.: Development of orientation preference maps in ferret primary visual cortex. J. Neurosci. 16(20), 6443–6453 (1996)

    Google Scholar 

  52. Koulakov, A.A., Chklovskii, D.B.: Orientation preference patterns in mammalian visual cortex: a wire length minimization approach. Neuron 29, 519–527 (2001)

    Article  Google Scholar 

  53. Azencott, R.: Simulated Annealing, Séminaire Bourbaki 697, Astérisque 161–162, Paris (1988)

    Google Scholar 

  54. Gregor, K., Szlam, A., LeCun, Y.: Structured sparse coding via lateral inhibition. http://books.nips.cc/nips24.html

  55. Hyvärinen, A., Hoyer, P.O.: A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vision Res. 41(18), 2413–2423 (2001)

    Article  Google Scholar 

  56. Shmuel, A., Grinvald, A.: Coexistence of linear zones and pinwheels within orientation maps in cat visual cortex. Proc. Natl. Acad. Sci. 97(10), 5568–5573 (2000)

    Google Scholar 

  57. Ohki, K., Matsuda, Y., Ajima, A., Kim, D.-S., Tanaka, S.: Arrangement of orientation pinwheel centers around area 17/18 transition zone in cat visual cortex. Cereb. Cortex 10, 593–601 (2000)

    Article  Google Scholar 

  58. Romagnoni, A., Ribot, J., Bennequin, D., Touboul, J.: Parsimony, exhaustivity and balanced detection in neocortex. PLoS Comput. Biol. 11(11), e1004623

    Google Scholar 

  59. Petitot, J.: Eléments de théorie des singularités. http://jean.petitot.pagesperso-orange.fr/ArticlesPDF_new/Petitot_Sing.pdf (1982)

  60. Berry, M.V.: Much ado about nothing: optical dislocation lines (phase singularities, zeros, vortices ...). In: Soskin, M.S. (ed.) Proceedings of International Conference on Singular Optics, vol. 3487, pp. 1–5. SPIE (Society of Photographic Instrumentation Engineers) (1998)

    Google Scholar 

  61. Berry, M.V., Dennis, M.R.: Reconnections of wave vortex lines. Eur. J. Physics 33, 723–731 (2012)

    Article  MATH  Google Scholar 

  62. Bennequin, D.: Remarks on invariance in the primary visual systems of mammals. In: Citti, G., Sarti, A. (eds). Neuromathematics of Vision, pp. 243–333. Springer, Berlin (2014)

    Google Scholar 

  63. Afgoustidis, A.: Monochromaticity of orientation maps in \(V1\) implies minimum variance for hypercolumn size. J. Math. Neurosci. 5, 10 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  64. Afgoustidis, A.: Représentations de groupes de Lie et fonctionnement géométrique du cerveau, Thèse (D. Bennequin dir.), Université Paris VII (2016)

    Google Scholar 

  65. Citti, G., Sarti, A.: From functional architectures to percepts: a neuromathematical approach. In: Citti, G., Sarti, A. (eds.) Neuromathematics of Vision, pp. 131–171. Springer (2014)

    Google Scholar 

  66. Petitot, J.: Introduction aux phénomènes critiques. http://jean.petitot.pagesperso-orange.fr/ArticlesPDF_new/Petitot_CritPh.pdf (1982)

  67. Petitot, J.: Landmarks for neurogeometry. In: Citti, G., Sarti, A. (eds). Neuromathematics of Vision, pp. 1–85. Springer, Berlin (2014)

    Google Scholar 

  68. Dennis, M.R.: Topological Singularities in Wave Fields , PhD Thesis, H.H. Wills Laboratory, University of Bristol (2001)

    Google Scholar 

  69. Berry, M.V.: Optical currents. J. Opt. A: Pure Appl. Opt. 11(9), 094001 (2009)

    Article  Google Scholar 

  70. Berry, M.V., Dennis, M.R.: Phase singularities in isotropic random waves. Proc. Roy. Soc. London A 456, 2059–2079 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  71. Berry, M.V., Dennis, M.R.: Topological events on wave dislocation lines: birth and death of loops, and reconnection. J. Physics A: Math. Theor. 40, 65–74 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  72. Wolf, F., Geisel, T.: Spontaneous pinwheel annihilation during visual development. Nature 395, 73–78 (1998)

    Article  Google Scholar 

  73. Wolf, F., Geisel, T.: Universality in visual cortical pattern formation. In: Petitot, J., Lorenceau, J. (eds). Neurogeometry and Visual Perception, pp. 253–264. J. Physiol. Paris 97, 2–3 (2003)

    Google Scholar 

  74. Barbieri, D., Citti, G., Sanguinetti, G., Sarti, A.: An uncertainty principle underlying the functional architecture of V1. J. Physiol. Paris 106(5–6), 183–193 (2012)

    Google Scholar 

  75. Abrahamsen, P.: A Review of Gaussian Random Fields and Correlation Functions. http://publications.nr.no/917_Rapport.pdf (1997)

  76. Azaïs, J.-M., León, J.R., Wschebor, M.: Rice formulae and Gaussian waves. Bernoulli 17(1), 170–193 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  77. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer, Berlin (2007)

    MATH  Google Scholar 

  78. Swindale, N.V.: The development of topography in the visual cortex: a review of models. Netw. Comput. Neural Syst. 7(2), 161–247 (1996)

    Article  MATH  Google Scholar 

  79. Bednar, J.A.: Hebbian learning of the statistical and geometrical structure of visual inputs. In: Citti, G., Sarti, A. (eds). Neuromathematics of Vision, pp. 335–366. Springer, Berlin (2014)

    Google Scholar 

  80. Miikkulainen, R., Bednar, J.A., Choe, Y., Sirosh, J.: Computational Maps in the Visual Cortex. Springer, New York (2005)

    Google Scholar 

  81. Wolf, F.: Symmetry, multistability, and long-range interaction in brain development. Phys. Rev. Lett. 95, 208701, 1–4 (2005). Erratum: 103, 20 (2009)

    Google Scholar 

  82. Kaschube, M., Schnabel, M., Wolf, F.: Self-organization and the selection of pinwheel density in visual cortical development. arXiv:0801.3651v1 (2008)

  83. Lee, H.Y., Yahyanejad, M., Kardar, M.: Symmetry considerations and development of pinwheels in visual maps, arXiv:cond-mat/0312539v1

  84. Swift, J.B., Hohenberg, P.C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15, 319–328 (1977)

    Article  Google Scholar 

  85. Schnabel, M., Kaschube, M., Wolf, F.: Pinwheel stability, pattern selection and the geometry of visual space. arXiv:0801.3832v2 (2008)

  86. Maldonado, P.E., Gödecke, I., Gray, C.M., Bonhöffer, T.: Orientation selectivity in pinwheel centers in cat striate cortex. Science 276, 1551–1555 (1997)

    Google Scholar 

  87. Polimeni, J.R., Granquist-Fraser, D., Wood, R.J., Schwartz, E.L.: Physical limits to spatial resolution of optical recording: clarifying the spatial structure of cortical hypercolumns. Proc. Natl. Acad. Sci. 102(11), 4158–4163 (2005)

    Google Scholar 

  88. McLaughlin, D., Shapley, R., Shelley, M., Wielaard, D.J.: A neuronal network model of macaque primary visual cortex (\(V1\)): orientation selectivity and dynamics in the input layer 4C\(\alpha \). Proc. Natl. Acad. Sci. 97(14), 8087–8092 (2000)

    Google Scholar 

  89. Shelley, M., McLaughlin, D.: Coarse-grained reduction and analysis of a network model of cortical response: I. drifting grating stimuli. J. Comput. Neurosci. 12, 97–122 (2002)

    Article  MATH  Google Scholar 

  90. Schummers, J., Mariño, J., Sur, M.: Synaptic integration by \(V1\) neurons depends on location within the orientation map. Neuron 36, 969–978 (2002)

    Article  Google Scholar 

  91. Mariño, J., Schummers, J., Lyon, D.C., Schwabe, L., Beck, O., Wiesing, P., Obermayer, K., Sur, M.: Invariant computations in local cortical networks with balanced excitation and inhibition. Nat. Neurosci. 8(2), 194–201 (2005)

    Article  Google Scholar 

  92. Ohki, K., Chung, S., Kara, P., Hübener, M., Bonhöffer, T., Reid, R.C.: Highly ordered arrangement of single neurons in orientation pinwheels. Nature 442, 925–928 (2006)

    Google Scholar 

  93. Petitot, J.: Rappels sur l’Analyse non standard. In: Salanskis, J.-M., Barreau, H. (eds). La Mathématique non standard, pp. 187–209. Éditions du CNRS, Paris (1989)

    Google Scholar 

  94. Deligne, P., Malgrange, B., Ramis, J.-P.: Singularités irrégulières. Correspondance et documents, Société Mathématique de France (2007)

    MATH  Google Scholar 

  95. Ramis, J.-P.: Les derniers travaux de Jean Martinet. Annales de l’Institut Fourier 42(1–2), 15–47 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  96. Martinet, J.: Introduction à la théorie de Cauchy sauvage (unpublished). See Ramis above

    Google Scholar 

  97. Das, A., Gilbert, C.D.: Distortions of visuotopic map match orientation singularities in primary visual cortex. Nature 387, 594–598 (1997)

    Article  Google Scholar 

  98. Ohki, K., Chung, S., Ch’ng, Y.H., Kara, P., Reid, R.C.: Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005)

    Article  Google Scholar 

  99. Bressloff, P., Cowan, J.: The functional geometry of local and horizontal connections in a model of \(V1\). In: Petitot, J., Lorenceau, J. (eds). Neurogeometry and Visual Perception, pp. 221–236. J. Physiol. Paris 97, 2–3 (2003)

    Google Scholar 

  100. Hübener, M., Shoham, D., Grinvald, A., Bonhöffer, T.: Spatial relationships among three columnar systems in cat area 17. J. Neurosci. 17, 9270–9284 (1997)

    Google Scholar 

  101. Issa, N.P., Trepel, C., Stryker, M.P.: Spatial frequency maps in cat visual cortex. J. Neurosci. 22, 8504–8514 (2000)

    Google Scholar 

  102. Sirovich, L., Uglesich, R.: The organization of orientation and spatial frequency in primary visual cortex. Proc. Natl. Acad. Sci. 101(48), 16941–16946 (2004)

    Google Scholar 

  103. Born, R.T., Tootell, R.B.: Spatial frequency tuning of single units in macaque supragranular striate cortex. Proc. Natl. Acad. Sci. 88, 7066–7070 (1990)

    Google Scholar 

  104. Issa, N.P., Rosenberg, A., Husson, T.R.: Models and measurements of functional maps in \(V1\). J. Neurophysiol. 99, 2745–2754 (2008)

    Article  Google Scholar 

  105. Zhu, W., Xing, D., Shelley, S., Shapley, R.: Correlation between spatial frequency and orientation selectivity in \(V1\) cortex: implications of a network model. Vision Res. 50, 2261–2273 (2010)

    Article  Google Scholar 

  106. Ribot, J., Romagnoni, A., Milleret, C., Bennequin, D., Touboul, J.: Pinwheel-dipole configuration in cat early visual cortex. NeuroImage 128, 63–73 (2016)

    Article  Google Scholar 

  107. Ribot, J., Aushana, Y., Bui-Quoc, E., Milleret, C.: Organization and origin of spatial frequency maps in cat visual cortex. J. Neurosci. 33, 13326–13343 (2013)

    Article  Google Scholar 

  108. Tani, T., Ribot, J., O’Hashi, K., Tanaka, S.: Parallel development of orientation maps and spatial frequency selectivity in cat visual cortex. Eur. J. Neurosci. 35, 44–55 (2012)

    Article  Google Scholar 

  109. Xu, X., Bosking, W.H., Sáry, G., Stefansic, J., Shima, D., Casagrande, V.: Functional organization of visual cortex in the owl monkey. J. Neurosci. 24(28), 6237–6247 (2004)

    Article  Google Scholar 

  110. Liu, G.B., Pettigrew, J.D.: Orientation mosaic in barn owl’s visual Wulst revealed by optical imaging: comparison with cat and monkey striate and extra-striate areas. Brain Res. 961, 153–158 (2003)

    Article  Google Scholar 

  111. Obermayer, K., Blasdel, G.G.: Geometry of orientation and ocular dominance columns in monkey striate cortex. J. Neurosci. 13, 4114–4129 (1993)

    Google Scholar 

  112. Carreira-Perpiñán, M.A., Goodhill, G.J.: Influence of lateral connections on the structure of cortical maps. J. Neurophysiol. 92, 2947–2959 (2004)

    Article  Google Scholar 

  113. Bednar, J.A., Miikkulainen, R.: Joint maps for orientation, eye, and direction preference in a self-organizing model of \(V1\). Neurocomputing 69, 1272–1276 (2006)

    Article  Google Scholar 

  114. Miikkulainen, R., Bednar, J.A., Choe, Y., Sirosh, J.: A Self-organizing neural network model of the primary visual cortex. In: Proceedings of the Fifth International Conference on Neural Information Processing (ICONIP’98) (1998)

    Google Scholar 

  115. Swindale, N.V.: How many maps are there in visual cortex? Cereb. Cortex 7, 633–643 (2000)

    Article  Google Scholar 

  116. Swindale, N.V.: How different feature spaces may be represented in cortical maps? Network 15, 217–242 (2004)

    Article  Google Scholar 

  117. Kara, P., Boyd, J.D.: A micro-architecture for binocular disparity and ocular dominance in visual cortex. Nat. Lett. 458, 627–631 (2009)

    Article  Google Scholar 

  118. Thom, R.: Stabilité structurelle et Morphogenèse. Benjamin, New York, Ediscience, Paris (1972)

    MATH  Google Scholar 

  119. Thom, R.: Modèles mathématiques de la morphogenèse. Bourgois, Paris (1980)

    MATH  Google Scholar 

  120. Blake, R., Wilson, H.: Binocular vision. Vision Res. 51, 754–770 (2011)

    Article  Google Scholar 

  121. Kim, Y.-J., Grabowecky, M., Suzuki, S.: Stochastic resonance in binocular rivalry. Vision Res. 46, 392–406 (2006)

    Article  Google Scholar 

  122. De Jong, T.M.: The Dynamics of Visual Rivalry. University of Utrecht, Thesis (2008)

    Google Scholar 

  123. Leopold, D.A., Logothetis, N.K.: Multistable phenomena: changing views in perception. Trends Cogn. Sci. 3(7), 254–264 (1999)

    Article  Google Scholar 

  124. Lu, H.D., Roe, A.W.: Functional organization of color domains in \(V1\) and \(V2\) of macaque monkey revealed by optical imaging. Cereb. Cortex 18(3), 516–533 (2008)

    Article  Google Scholar 

  125. Rochefort, N.L.: Functional Specificity of Callosal Connections in the Cat Visual Cortex. PhD Thesis, Ruhr-Universität, Bochum and Université de Paris VI, Paris (2007)

    Google Scholar 

  126. Bosking, W.H., Kretz, R., Pucak, M.L., Fitzpatrick, D.: Functional specificity of callosal connections in tree shrew striate cortex. J. Neurosci. 20(6), 2346–2359 (2000)

    Google Scholar 

  127. Olavarria, J.F.: Callosal connections correlate preferentially with ipsilateral cortical domains in cat areas 17 and 18, and with contralateral domains in the 17/18 transition zone. J. Comp. Neurol. 433(4), 441–457 (2001)

    Article  Google Scholar 

  128. Rochefort, N.L., Buzás, P., Kisvárday, Z.F., Eysel, U.T., Milleret, C.: Layout of transcallosal activity in cat visual cortex revealed by optical imaging. NeuroImage 36(3), 1804–1821 (2007)

    Article  Google Scholar 

  129. Rochefort, N.L., Buzás, P., Quenech’du, N., Koza, A., Eysel, U.T., Milleret, C., Kisvárday, Z.F.: Functional selectivity of interhemispheric connections in cat visual cortex. Cereb. Cortex 19, 2451–2465 (2009)

    Article  Google Scholar 

  130. Petitot, J.: Physique du Sens. Éditions du CNRS, Paris (1992)

    MATH  Google Scholar 

  131. Grossberg, S.: Neural Networks and Natural Intelligence. MIT Press, Cambridge, MA (1988)

    Google Scholar 

  132. Tani, T., Yokoi, I., Ito, M., Tanaka, S., Komatsu, H.: Functional organization of the cat visual cortex in relation to the representation of a uniform surface. J. Neurophysiol. 89, 1112–1125 (2003)

    Article  Google Scholar 

  133. Shapley, R., Hawken, M.J.: Color in the cortex: single- and double-opponents cells. Vision Res. 51, 701–717 (2011)

    Article  Google Scholar 

  134. Foster, D.H.: Color constancy. Vision Res. 51, 674–700 (2011)

    Article  Google Scholar 

  135. Johnson, E.N., Hawken, M.J., Shapley, R.: The orientation selectivity of color-responsive neurons in macaque \(V1\). J. Neurosci. 28, 8096–8106 (2008)

    Article  Google Scholar 

  136. Tailor, D.R., Finkel, L.H., Buchsbaum, G.: Color-opponent receptive fields derived from independent component analysis of natural images. Vision Res. 40, 2671–2676 (2000)

    Article  Google Scholar 

  137. Cecchi, G.A., Rao, A.R., Xiao, Y., Kaplan, E.: Statistics of natural scenes and cortical color processing. J. Vision 10(11), 1–13 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Petitot .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petitot, J. (2017). Functional Architecture I: The Pinwheels of V1. In: Elements of Neurogeometry. Lecture Notes in Morphogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-65591-8_4

Download citation

Publish with us

Policies and ethics