Skip to main content

Chemical Approaches Towards Neurodegenerative Disease Prevention: The Role of Coupling Sugars to Phenolic Biomolecular Entities

  • Chapter
  • First Online:
Coupling and Decoupling of Diverse Molecular Units in Glycosciences

Abstract

Polyphenols are natural molecular entities exhibiting a wide variety of bioactivities including anticholinergic and/or antiamyloidogenic activities. Their low solubility is recognized as a key factor for bioavailability and their glycosylation is indeed relevant to improve the bioaccess to these molecules. In this chapter, chemical and enzymatic syntheses of glycosylated flavonoids, stilbenoids, phenylethanoids and phenylpropanoids are illustrated, covering examples that demonstrate the impact of coupling sugars to bioactive aglycones in their bioavailability and in their pharmacological activity. The chapter is focused particularly on glycosyl polyphenols with promising activities against neurodegenerative impairments, given their potential to intervene in biological processes that cause catastrophic diseases, namely the Alzheimer’s disease.

Catarina Dias and Ana M. Matos have both contributed equally to the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ancheeva E, Daletos G, Muharini R, Lin W, Teslov L, Proksch P (2015) Flavonoids from Stellaria nemorum and Stellaria holostea. Nat Prod Commun 10(3):437–440

    Google Scholar 

  2. Bavaresco L, Fregoni C, Cantù E, Trevisan M (1999) Stilbene compounds: from the grapevine to wine. Drugs Exp Clin Res 25(2–3):57–63

    Google Scholar 

  3. Biasutto L, Marotta E, Bradaschia A, Fallica M, Mattarei A, Garbisa S, Zoratti M, Paradisi C (2009) Soluble polyphenols: Synthesis and bioavailability of 3,4′,5-tri(α-D-glucose-3-O-succinyl) resveratrol. Bioorg Med Chem Lett 19(23):6721–6724

    Google Scholar 

  4. Cattaneo F, Costamagna M, Zampini I, Sayago J, Alberto M, Chamorro V, Pazos A, Thomas-Valdés S, Schmeda-Hirschmann G, Isla M (2016) Flour from Prosopis alba cotyledons: a natural source of nutrient and bioactive phytochemicals. Food Chem 208:89–96

    Google Scholar 

  5. Chen X, Cui L, Duan X, Ma B, Zhong D (2006) Pharmacokinetics and metabolism of the flavonoid scutellarin in humans after a single oral administration. Drug Metab Dispos 34(8):1345–1352

    Google Scholar 

  6. Chen C, Li X, Gao P, Tu Y, Zhao M, Li J, Zhang S, Liang H (2015) Baicalin attenuates Alzheimer-like pathological changes and memory deficits induced by amyloid β1-42 protein. Metab Brain Dis 30(2):537–544

    Google Scholar 

  7. Choi J, Islam M, Ali M, Kim E, Kim Y, Jung H (2014) Effects of C-glycosylation on anti-diabetic, anti-Alzheimer’s disease and anti-inflammatory potential of apigenin. Food Chem Toxicol 64:27–33

    Google Scholar 

  8. Choi J, Islam M, Ali M, Kim Y, Park H, Sohn H, Jung H (2014) The effects of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer’s disease, anti-diabetic, and anti-inflammatory activities. Arch Pharm Res 37(10):1354–1363

    Google Scholar 

  9. Courts F, Williamson G (2015) The occurrence, fate and biological activities of C-glycosyl flavonoids in the human diet. Crit Rev Food Sci Nutr 55(10):1352–1367

    Google Scholar 

  10. D’Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, Ferri A, Diamantini A, De Zio D, Carrara P, Battistini L, Moreno S, Bacci A, Ammassari-Teule M, Marie H, Cecconi F (2011) Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer’s disease. Nat Neurosci 14(1):69–76

    Google Scholar 

  11. Ding H, Wang H, Zhao Y, Sun D, Zhai X (2015) Protective effects of baicalin on Aβ1-42-induced learning and memory deficit, oxidative stress, and apoptosis in rat. Cell Mol Neurobiol 35(5):623–632

    Google Scholar 

  12. Dirks-Hofmeister ME, Verhaeghe T, De Winter K, Desmet T (2015) Creating space for large acceptors: rational biocatalyst design for resveratrol glycosylation in an aqueous system. Angew Chem Int Ed 54:9289–9292

    Google Scholar 

  13. Dolai S, Shi W, Corbo C, Sun C, Averick S, Obeysekera D, Farid M, Alonso A, Banerjee P, Raja K (2011) “Clicked” sugar − curcumin conjugate: modulator of amyloid-β and tau peptide aggregation at ultralow concentrations. Chem Neurosci 2:694–699

    Google Scholar 

  14. Fang M, Yuan Y, Lu J, Li H, Zhao M, Ling E, Wu C (2016) Scutellarin promotes microglia-mediated astrogliosis coupled with improved behavioral function in cerebral ischemia. Neurochem Int [epub ahead of print]

    Google Scholar 

  15. Fang M, Yuan Y, Rangarajan P, Lu J, Wu Y, Wang H, Wu C, Ling E (2015) Scutellarin regulates microglia-mediated TNC1 astrocytic reaction and astrogliosis in cerebral ischemia in the adult rats. BMC Neurosci 16:84

    Google Scholar 

  16. Furuta T, Kimura T, Kondo S, Mihara H, Wakimoto T, Nukaya H, Tsuji K, Tanaka K (2004) Concise total synthesis of flavone C-glycoside having potent anti-inflammatory activity. Tetrahedron 60:9375–9379

    Google Scholar 

  17. Gao C, Chen X, Zhong D (2011) Absorption and disposition of scutellarin in rats: a pharmacokinetic explanation for the high exposure of its isomeric metabolite. Drug Metab Dispos 39(11):2034–2044

    Google Scholar 

  18. Guimarães C, Oliveira D, Valdevite M, Saltoratto A, Pereira S, França S, Pereira A, Pereira P (2015) The glycosylated flavonoids vitexin, isovitexin, and quercetrin isolated from Serjania erecta Radlk (Sapindaceae) leaves protect PC12 cells against amyloid-β25-35 peptide-induced toxicity. Food Chem Toxicol 86:88–94

    Google Scholar 

  19. Guo Y, Zhao Y, Zheng C, Meng Y, Yang Y (2010) Synthesis, biological activity of salidroside and its analogues. Chem Pharm Bull 58(12):1627–1629

    Google Scholar 

  20. Hamada H, Shimoda K, Shimizy N, Akagi M (2014) Synthesis of glycosides of resveratrol, pterostilbene, and piceatannol by glucosyltransferase from phytolacca americana expressed in bacillus subtilis and their chemopreventive activity against cancer, allergic, and alzheimer’s diseases. Glycobiol Insights 4:1–6

    Google Scholar 

  21. Hamilton M, Caulfield J, Pickett J, Hooper A (2009) C-Glucosylflavonoid biosynthesis from 2-hydroxynaringenin by Desmodium uncinatum (Jacq.)(Fabaceae). Tetrahedron Lett 50:5656–5659

    Google Scholar 

  22. Hao B, Caulfield J, Hamilton M, Pickett J, Midega C, Khan Z, Wang J, Hooper A (2016) Biosynthesis of natural and novel C-glycosylflavones utilising recombinant Orzya sativa C-glycosyltransferase (OsCGT) and Desmodium incanum root proteins. Phytochemistry 125:73–87

    Google Scholar 

  23. Huang J, Weng W, Huang X, Ji Y, Chen E (2005) Pharmacokinetics of scutellarin and its aglycone conjugated metabolites in rats. Eur J Drug Metab Pharmacokinet 30(3):165–170

    Google Scholar 

  24. Ishikura Y, Tsuji K, Nukaya H (2002) Novel derivative of flavone C-glycoside and composition containing the same. WO 2004005296

    Google Scholar 

  25. Jesus A, Dias C, Matos A, Almeida R, Viana A, Marcelo F, Ribeiro R, Macedo M, Airoldi C, Nicotra F, Martins A, Cabrita E, Jiménez-Barbero J, Rauter A (2014) Exploiting the therapeutic potential of 8-β-d-glucopyranosylgenistein: synthesis, antidiabetic activity, and molecular interaction with islet amyloid polypeptide and amyloid β-peptide (1–42). J Med Chem 57(22):9463–9476

    Google Scholar 

  26. Jung H, Karki S, Kim J, Choi J (2015) BACE1 and cholinesterase inhibitory activities of Nelumbo nucifera embryos. Acta Pharm Res 38(6):1178–1187

    Google Scholar 

  27. Jung M, Park M (2007) Acetylcholinesterase inhibition by flavonoids from Agrimonia pilosa. Molecules 12(9):2130–2139

    Google Scholar 

  28. Kawada T, Asano R, Hayashida S, Sakuno T (1999) Total synthesis of the phenylpropanoid glycoside, acteoside. J Org Chem 64:9268–9271

    Google Scholar 

  29. Kerscher F, Franz G (1986) Biosynthesis of vitexin and isovitexin: enzymatic synthesis of the C-glucosylflavones vitexin and isovitexin with an enzyme preparation from Fagopyrum esculentum M. seedlings. Z. Naturforsch. 42c:519–524

    Google Scholar 

  30. Kishida M, Akita H (2005) Synthesis of rosavin and its analogues based on a mizoroki-heck type reaction. Tetrahedron Asymmetry 16:2625–2630

    Google Scholar 

  31. Koekkoek P, Kappelle L, Van den Berg E, Rutten G, Biessels G (2015) Cognitive function in patients with diabetes mellitus: guidance for daily care. Lancet Neurol 14(3):329–340

    Google Scholar 

  32. Komentani T, Kondo H, Fujimori Y (1988) Boron trifluoride-catalyzed rearrangement of 2-aryloxytetrahydropyrans: a new entry to C-arylglycosidation. Synthesis 1005–1007

    Google Scholar 

  33. Kumazawa T, Kimura T, Matsuba S, Sato S, Onodera J (2011) Synthesis of 8-C-glucosylflavones. Carbohydr Res 334(3):183–193

    Google Scholar 

  34. Kumazawa T, Minatogawa T, Matsuba S, Sato S, Onodera J (2000) An effective synthesis of isoorientin: the regioselective synthesis of a 6-C-glucosylflavone. Carbohydr Res 329(3):507–513

    Google Scholar 

  35. Kurisu M, Miyamae Y, Murakami K, Han J, Isoda H, Irie K, Shigemori H (2013) Inhibition of amyloid β aggregation by acteoside, a phenylethanoid glycoside. Biosci Biotechnol Biochem 77(6):1329–1332

    Google Scholar 

  36. Ladiwala A, Mora-Pale M, Lin J, Bale S, Fishman Z, Dordick J, Tessier P (2011) Polyphenolic glycosides and aglycones utilize opposing pathways to selectively remodel and inactivate toxic oligomers of amyloid β. ChemBioChem 12(11):1749–1758

    Google Scholar 

  37. Law B, Ling A, Koh R, Chye S, Wong Y (2014) Neuroprotective effects of orientin on hydrogen peroxide–induced apoptosis in SH-SY5Y cells. Mol Med Rep 9(3):947–954

    Google Scholar 

  38. Lee D, Zhang W, Karnati V (2003) Total synthesis of puerarin, an isoflavone C-glycoside. Tetrahedron Lett 44(36):6857–6859

    Google Scholar 

  39. Li J, Wang G, Liu J, Zhou L, Dong M, Wang R, Li X, Li X, Lin C, Niu Y (2010) Puerarin attenuates amyloid-beta-induced cognitive impairment through suppression of apoptosis in rat hippocampus in vivo. Eur J Pharmacol 649(1–3):195–201

    Google Scholar 

  40. Li N, Shen M, Wang Z, Tang Y, Shi Z, Fu Y, Shi Q, Tang H, Duan J (2013) Design, synthesis and biological evaluation of glucose-containing scutellarein derivatives as neuroprotective agents based on metabolic mechanism of scutellarin in vivo. Bioorg Med Chem Lett 23(1):102–106

    Google Scholar 

  41. Lin F, Xie B, Cai F, Wu G (2012) Protective effect of Puerarin on β-amyloid-induced neurotoxicity in rat hippocampal neurons. Arzneimittelforschung 62(4):187–193

    Google Scholar 

  42. Liu X, Mo Y, Gong J, Li Z, Peng H, Chen J, Wang Q, Ke Z, Xie J (2016) Puerarin ameliorates cognitive deficits in streptozotocin-induced diabetic rats. Metab Brain Dis 31(2):417–423

    Google Scholar 

  43. Li XD, Kang ST, Li X, Wang JH (2011) Synthesis of some Phenylpropanoid Glycosides (PPGs) and their acetylcholinesterase/xanthine oxidase inhibitory activities. Molecules 16:3580–3596

    Google Scholar 

  44. Li Z, Shangguan Z, Liu Y, Wang J, Li X, Yang S, Liu S (2014) Puerarin protects pancreatic β-cell survival via PI3 K/Akt signaling pathway. J Mol Endocrinol 53(1):71–79

    Google Scholar 

  45. Li Y, Biao Y, Sun J, Wang R (2015) Efficient synthesis of baicalin and its analogs. Tetrahedron Lett 56:3816–3819

    Google Scholar 

  46. Lozoya X, Meckes M, Abou-Zaid M, Tortoriello J, Nozzolillo C, Arnason J (1994) Quercetin glycosides in Psidium guajava L. leaves and determination of a spasmolytic principle. Arch Med Res 25(1):11–15

    Google Scholar 

  47. Mahling J, Jung K, Schmidt R (1995) Synthesis of flavone C-glycosides vitexin, isovitexin and isoembigenin. Leibigs Ann Chem 461–466

    Google Scholar 

  48. Masibo M, He Q (2008) Major mango polyphenols and their potential significance to human health. CRFSFS 7(4):309–319

    Google Scholar 

  49. Mathew S, Hedström M, Adlercreutz P (2012) Enzymatic synthesis of piceid glycosides by cyclodextrin glucanotransferase. Process Biochem 47:528–532

    Google Scholar 

  50. Mishra S, Palanivelu K (2006) The effect of curcumin (turmeric) on Alzheimer’s disease: An overview. Life Sci 78(18):2081–2087

    Google Scholar 

  51. Mulani SK, Guh JH, Mong KKT (2014) general synthetic strategy and the anti-proliferation properties on prostate cancer cell lines for natural phenylethanoid glycosides. Org Biomol Chem 12:2926–2937

    Google Scholar 

  52. Noorafshan A, Ashkani-Esfahani S (2013) A review of therapeutic effects of curcumin. Curr Pharm Des 19(11):2032–2046

    Google Scholar 

  53. Orsini F, Pelozzoni F, Bellini B, Miglierini G (1997) Synthesis of biologically active polyphenolic glycosides (combretastatin and resveratrol series). Carb Res 301:95–109

    Google Scholar 

  54. Pan Z, Feng T, Shan L, Cai B, Chu W, Niu H, Lu Y, Yang B (2008) Scutellarin-induced endothelium-independent relaxation in rat aorta. Phytother Res 22(11):1428–1433

    Google Scholar 

  55. Park H, Kim J, Choi KH, Hwand S, Yang SJ, Baek NI, Cha J (2012) Enzymatic synthesis of piceid glucosides using maltosyltransferase from caldicellulosiruptor bescii DSM 6725. J Agric Food Chem 60:8183–8189

    Google Scholar 

  56. Prasad S, Tyagi AK, Aggarwal BB (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 46(1):2–18

    Google Scholar 

  57. Qiao W, Zhao C, Qin N, Zhai H, Duan H (2011) Identification of trans-tiliroside as active principle with anti-hyperglycemic, anti-hyperlipidemic and antioxidant effects from Potentilla chinesis. J Ethnopharmacol 135(2):515–521

    Google Scholar 

  58. Rege SD, Geetha T, Griffin GD, Broderick TL, Babu JR (2014) Neuroprotective effects of resveratrol in Alzheimer disease pathology. Front Aging Neurosci 6(1):1–12

    Google Scholar 

  59. Ren G, Hou J, Fang Q, Sun H, Liu X, Zhang L, Wang P (2012) Synthesis of flavonol 3-O-glycoside by UGT78D1. Glycoconj J 29(5–6):425–432

    Google Scholar 

  60. Renaud S, Lorgeril M (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339(8808):1523–1526

    Google Scholar 

  61. Rivière C, Richard T, Quentin L, Krisa S, Mérillon JM, Monti JP (2007) Inhibitory activity of stilbenes on Alzheimer’s β-amyloid fibrils in vitro. Bioorg Med Chem 15:1160–1167

    Google Scholar 

  62. Robertson A, Robinson R (1926) Experiments on the synthesis of anthocyanins. Part I. J Chem Soc 129:1713–1720

    Google Scholar 

  63. Roupe KA, Remsberg CM, Yáñez JA, Davies NM (2006) Pharmacometrics of stilbenes: guing towards the Clinic. Curr Clin Pharmacol 1:81–101

    Google Scholar 

  64. Santos R, Jesus A, Caio J, Rauter A (2011) Fries-type reactions for the C-glycosylation of phenols. Curr Org Chem 15:128–148

    Google Scholar 

  65. Sato D, Shimizu N, Shimizu Y, Akagi M, Eshita Y, Ozaki S, Nakajima N, Ishihara K, Sato D, Shimizu N, Shimizu Y, Akagi M, Eshita Y, Ozaki S-I, Nakajima N, Ishihara K, Masuoka N, Hamada H, Shimoda K, Kubota N (2014) Synthesis of glycosides of resveratrol, pterostilbene, and piceatannol, and their anti-oxidant, anti-allergic, and neuroprotective activities. Biosci Biotech Biochem 78:1123–1128

    Google Scholar 

  66. Shi T, Chen H, Jing L, Liu X, Sun X, Jiang R (2011) Development of a kilogram-scale synthesis of salidroside and its analogs. Synth Commun 41:2594–2600

    Google Scholar 

  67. Shi LF, Cai Z, Yao B (2004) Preparation of salidroside derivatives as antioxidants. Faming Zhuanli Shenqing Gongkai Shuomingshu. CN Patent 1475492 A 20040218

    Google Scholar 

  68. Tang H, Tang Y, Li N, Shi Q, Guo J, Shang E, Duan J (2014) Neuroprotective effects of scutellarin and scutellarein on repeatedly cerebral ischemia-reperfusion in rats. Pharmacol Biochem Behav 118:51–59

    Google Scholar 

  69. Torres P, Poveda A, Jimenez-Barbero J, Parra JL, Comelles F, Ballesteros AO, Plou FJ (2011) Enzymatic Synthesis of α-Glucosides of Resveratrol with surfactant activity. Adv Synth Catal 353:1077–1086

    Google Scholar 

  70. Uriarte-Pueyo I, Calvo M (2011) Flavonoids as acetylcholinesterase inhibitors. Curr Med Chem 18(34):5289–5302

    Google Scholar 

  71. Velagapudi R, Aderogba M, Olajide O (2014) Tiliroside, a dietary glycosidic flavonoid, inhibits TRAF-6/NF-κB/p38-mediated neuroinflammation in activated BV2 microglia. Biochim Biophys Acta 1840(12):3311–3319

    Google Scholar 

  72. Vermes B, Chari V, Wagner H (1981) Structure elucidation and synthesis of flavonol acylglycosides. The synthesis of tiliroside. Helv Chim Acta 64(6):1964–1967

    Google Scholar 

  73. Walle T (2011) Bioavailability of resveratrol. Ann NY Acad Sci 1215:9–15

    Google Scholar 

  74. Wang HQ, Xu YX, Zhu CK (2012) Upregulation of heme oxygenase-1 by acteoside through ERK and PI3 K/Akt pathway confer neuroprotection against beta-amyloid-induced neurotoxicity. Neurotoxic Res 21:368–378

    Google Scholar 

  75. Wang HQ, Xu YX, Yan J, Zhao XY, Sun XB, Zhang YP, Guo JC, Zhu CK (2009) Acteoside protects human neuroblastoma SH-SY5Y cells against beta-amyloid-induced cell injury. Brain Res 1283:139–147

    Google Scholar 

  76. Wang C, Li J, Zhang L, Zhang X, Yu S, Liang X, Ding F, Wang Z (2013) Isoquercetin protects cortical neurons from oxygen-glucose deprivation-reperfusion induced injury via suppression of TLR4-NF-кB signal pathway. Neurochem Int 63(8):741–749

    Google Scholar 

  77. Wang C, Shi Y, Tang M, Zhang X, Gu Y, Liang X, Wang Z, Ding F (2016) Isoquercetin ameliorates cerebral impairment in focal ischemia through anti-oxidative, anti-inflammatory, and anti-apoptotic effects in primary culture of rat hippocampal neurons and hippocampal CA1 region of rats. Mol Neurobiol [epub ahead of print]

    Google Scholar 

  78. Wang C, Xie N, Zhang H, Li Y, Wang Y (2014) Puerarin protects against β-amyloid-induced microglia apoptosis via a PI3 K-dependent signalling pathway. Neurochem Res 39(11):2189–2196

    Google Scholar 

  79. Wang Y, Zhen Y, Wu X, Jiang Q, Li X, Chen Z, Zhang G, Dong L (2015) Vitexin protects brain against ischemia/reperfusion injury via modulating mitogen-activated protein kinase and apoptosis signalling in mice. Phytomedicine 22(3):379–384

    Google Scholar 

  80. Wen H, Lin C, Que L, Ge H, Ma L, Cao R, Wan Y, Peng W, Wang Z, Song H (2008) Synthesis and biological evaluation of helicid analogues as novel acetylcholinesterase inhibitors. Eur J Med Chem 43:166–173

    Google Scholar 

  81. Wenzel E, Somoza V (2005) Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res 49:472–481

    Google Scholar 

  82. Wu K, Liang T, Duan X, Xu L, Zhang K, Li R (2013) Anti-diabetic effects of puerarin, isolated from Pueraria lobata (Willd.), on streptozotocin-diabetogenic mice through promoting insulin expression and ameliorating metabolic function. Food Chem Toxicol 60:341–347

    Google Scholar 

  83. Xiong J, Wang C, Chen H, Hu Y, Tian L, Pan J, Geng M (2014) Aβ-induced microglial cell activation is inhibited by baicalin through the JAK2/STAT3 signaling pathway. Int J Neurosci 124(8):609–620

    Google Scholar 

  84. Yu L, Wang S, Chen X, Yang H, Li X, Xu Y, Zhu X (2015) Orientin alleviates cognitive deficits and oxidative stress in Aβ1-42-induced mouse model of Alzheimer's disease. Life Sci 121:104–109

    Google Scholar 

  85. Zhang B, Wang Y, Li H, Xiong R, Zhao Z, Chu X, Li Q, Sun S, Chen S (2016) Neuroprotective effects of salidroside through P13 K/Akt pathway activation in Alzheimer’s disease models. Drug Des Dev Ther 10:1335–1343

    Google Scholar 

  86. Zhang H, Liu Y, Wang H, Xu J, Hu H (2008) Puerarin protects PC12 cells against beta-amyloid-induced cell injury. Cell Biol Int 32(10):1230–1237

    Google Scholar 

  87. Zhang J, Guo W, Tian B, Sun M, Li H, Zhou L, Liu X (2015) Puerarin attenuates cognitive dysfunction and oxidative stress in vascular dementia rats induced by chronic ischemia. Int J Clin Exp Pathol 8(5):4695–4704

    Google Scholar 

  88. Zhang L, Yu H, Zhao X, Lin X, Tan C, Cao G, Wang Z (2010) Neuroprotective effects of salidroside against beta-amyloid-induced oxidative stress in SH-SY5Y human neuroblastoma cells. Neurochem Int 57(5):547–555

    Google Scholar 

  89. Zhao S, Yang W, Jin H, Ma K, Feng G (2015) Puerarin attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice. Neurotoxicology 51:166–171

    Google Scholar 

  90. Zhou Y, Xie N, Li L2, Zou Y, Zhang X, Dong M (2014) Puerarin alleviates cognitive impairment and oxidative stress in APP/PS1 transgenic mice. Int J Neuropsychopharmacol 17(4):635–644

    Google Scholar 

  91. Zhu J, Choi R, Li J, Xie H, Bi C, Cheung A, Dong T, Jiang Z, Chen J, Tsim K (2009) Estrogenic and neuroprotective properties of scutellarin from Erigeron breviscapus: a drug against postmenopausal symptoms and Alzheimer's disease. Planta Med 75(14):1489–1493

    Google Scholar 

  92. Żmijewski M, Sokół-Łętowska A, Pejcz E, Orzeł D (2015) Antioxidant activity of rye bread enriched with milled buckwheat groats fractions. Rocz Panstw Zakl Hig 66(2):115–121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amélia P. Rauter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dias, C., Matos, A.M., Rauter, A.P. (2018). Chemical Approaches Towards Neurodegenerative Disease Prevention: The Role of Coupling Sugars to Phenolic Biomolecular Entities. In: Witczak, Z., Bielski, R. (eds) Coupling and Decoupling of Diverse Molecular Units in Glycosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-65587-1_8

Download citation

Publish with us

Policies and ethics