Skip to main content

Selective Transformations of the Anomeric Centre in Water Using DMC and Derivatives

  • Chapter
  • First Online:
Book cover Coupling and Decoupling of Diverse Molecular Units in Glycosciences
  • 779 Accesses

Abstract

2-Chloro-1,3-dimethylimidazolinium chloride (DMC) and its derivatives are useful for numerous synthetic transformations, which involve selective activation of the anomeric centre of unprotected reducing sugars in water. This chapter summarises research reported to date using DMC and derivatives, such as 2-azido-1,3-dimethylimidazolinium hexafluorophosphate (ADMP). DMC has been successfully employed for the synthesis of glycosyl oxazolines, 1,6-anhydro-, 1-azido-, and a variety of thioglycosides. The use of ADMP allows the one-pot synthesis of glycosyl triazoles in water via the Cu-catalysed azide-alkyne Huisgen cycloaddition reaction. This latter methodology can be applied to a wide variety of carbohydrates and is also amenable to convergent glycopeptide synthesis in which oligosaccharides are directly conjugated to peptides that contain propargyl glycine residues. Such protecting group free methodologies, particularly when applied to complex oligosaccharides isolated from natural sources, may allow ready access to a wide variety of biologically interesting glycoconjugates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donohoe TJ, Logan JG, Laffan DDP (2003) Trichloro-oxazolines as activated donors for aminosugar coupling. Org Lett 5:4995–4998

    Article  CAS  Google Scholar 

  2. Blatter G, Beau J-M, Jacquinet J-C (1994) The use of 2-deoxy-2-trichloroacetamido-D-glucopyranose derivatives in syntheses of oligosaccharides. Carbohydr Res 260:189–202

    Article  CAS  Google Scholar 

  3. Fairbanks AJ (2011) Endohexosaminidase catalysed glycosylation with oxazoline donors: the development of robust biocatalytic methods for synthesis of defined homogeneous glycoconjugates. C R Chim 14:44–58

    Article  CAS  Google Scholar 

  4. Fairbanks AJ (2013) Endohexosaminidase-catalyzed synthesis of glycopeptides and proteins. Pure Appl Chem 85:1847–1863

    Article  CAS  Google Scholar 

  5. Kadokawa J, Mito M, Takahashi S et al (2004) Direct conversion of 2-Acetamido-2-deoxysugars to 1,2-Oxazoline derivatives by dehydrative cyclization in water. Heterocycles 63:1531–1535

    Article  CAS  Google Scholar 

  6. Isobe T, Ishikawa T (1999) 2-Chloro-1,3-dimethylimidazolinium chloride. 2. Its application to the construction of heterocycles through dehydration reactions. J Org Chem 64:6989–6992

    Article  CAS  Google Scholar 

  7. Isobe T, Ishikawa T (1999) 2-Chloro-1,3-dimethylimidazolinium chloride. 1. A powerful dehydrating equivalent to DCC. J Org Chem 64:6984–6988

    Article  CAS  Google Scholar 

  8. Noguchi M, Tanaka T, Gyakushi H et al (2009) Efficient synthesis of sugar oxazolines from unprotected N-acetyl-2-amino sugars by using chloroformamidinium reagent in water. J Org Chem 74:2210–2212

    Article  CAS  Google Scholar 

  9. Matta KL, Johnson EA, Barlow JJ (1973) A simple method for the synthesis of 2-acetamido-2-deoxy-β-D-galactopyranosides. Carbohydr Res 26:215–218

    Article  CAS  Google Scholar 

  10. Srivastava VK (1982) A facile synthesis of 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-D-glucopyrano)-[2,1-e]-2-oxazoline. Carbohydr Res 103:286–292

    Article  CAS  Google Scholar 

  11. Nakabayashi S, Warren CD, Jeanloz RW (1986) A new procedure for the preparation of oligosaccharide oxazolines. Carbohydr Res 150:c7–c10

    Article  CAS  Google Scholar 

  12. Colon M, Staveski MM, Davis JT (1991) Mild conditions for the preparation of high-mannose oligosaccharide oxazolines: entry point for β-glycoside and neoglycoprotein syntheses. Tetrahedron Lett 32:4447–4450

    Article  CAS  Google Scholar 

  13. Kowalczyk R, Brimble MA, Tomabechi Y et al (2014) Convergent chemoenzymatic synthesis of a library of glycosylated analogues of pramlintide: structure–activity relationships for amylin receptor agonism. Org Biomol Chem 12:8142–8151

    Article  CAS  Google Scholar 

  14. McIntosh JD, Brimble MA, Brooks AES et al (2015) Convergent chemo-enzymatic synthesis of mannosylated glycopeptides; targeting of putative vaccine candidates to antigen presenting cells. Chem Sci 6:4636–4642

    Article  CAS  Google Scholar 

  15. Tomabechi Y, Krippner G, Rendle PM et al (2013) Glycosylation of pramlintide: synthetic glycopeptides that display in vitro and in vivo activities as amylin receptor agonists. Chem Eur J 19:15084–15088

    Article  CAS  Google Scholar 

  16. Tomabechi Y, Squire MA, Fairbanks AJ (2014) Endo-β-N-acetylglucosaminidase catalysed glycosylation: tolerance of enzymes to structural variation of the glycosyl amino acid acceptor. Org Biomol Chem 12:942–955

    Article  CAS  Google Scholar 

  17. Lomino JV, Naegeli A, Orwenyo J et al (2013) A two-step enzymatic glycosylation of polypeptides with complex N-glycans. Bioorg Med Chem 21:2262–2270

    Article  CAS  Google Scholar 

  18. Orwenyo J, Huang W, Wang L-X (2013) Chemoenzymatic synthesis and lectin recognition of a selectively fluorinated glycoprotein. Bioorg Med Chem 21:4768–4777

    Article  CAS  Google Scholar 

  19. Smith EL, Giddens JP, Iavarone AT et al (2014) Chemoenzymatic Fc glycosylation via engineered aldehyde tags. Bioconjug Chem 25:788–795

    Article  CAS  Google Scholar 

  20. Umekawa M, Huang W, Li B et al (2008) Mutants of mucor hiemalis endo-β-N-acetylglucosaminidase show enhanced transglycosylation and glycosynthase-like activities. J Biol Chem 283:4469–4479

    Article  CAS  Google Scholar 

  21. Umekawa M, Higashiyama T, Koga Y et al (2010) Efficient transfer of sialo-oligosaccharide onto proteins by combined use of a glycosynthase-like mutant of Mucor hiemalis endoglycosidase and synthetic sialo-complex-type sugar oxazoline. Biochim Biophys Acta Gen Subj 1800:1203–1209

    Article  CAS  Google Scholar 

  22. Umekawa M, Li C, Higashiyama T et al (2010) Efficient glycosynthase mutant derived from mucor hiemalis endo-β-N-acetylglucosaminidase capable of transferring oligosaccharide from both sugar oxazoline and natural N-glycan. J Biol Chem 285:511–521

    Article  CAS  Google Scholar 

  23. Noguchi M, Fujieda T, Huang WC et al (2012) A practical one-step synthesis of 1,2-oxazoline derivatives from unprotected sugars and its application to chemoenzymatic β-N-acetylglucosaminidation of disialo-oligosaccharide. Helv Chim Acta 95:1928–1936

    Article  CAS  Google Scholar 

  24. Sun B, Bao W, Tian X et al (2014) A simplified procedure for gram-scale production of sialylglycopeptide (SGP) from egg yolks and subsequent semi-synthesis of Man3GlcNAc oxazoline. Carbohydr Res 396:62–69

    Article  CAS  Google Scholar 

  25. Tanaka T, Huang WC, Noguchi M et al (2009) Direct synthesis of 1,6-anhydro sugars from unprotected glycopyranoses by using 2-chloro-1,3-dimethylimidazolinium chloride. Tetrahedron Lett 50:2154–2157

    Article  CAS  Google Scholar 

  26. Köll P, Metzger J (1978) Thermal degradation of cellulose and chitin in supercritical acetone. Angew Chem Int Ed 17:754–755

    Article  Google Scholar 

  27. Miura M, Kaga H, Yoshida T, Ando K (2001) Microwave pyrolysis of cellulosic materials for the production of anhydrosugars. J Wood Sci 47:502–506

    Article  CAS  Google Scholar 

  28. Sasaki M, Takahashi K, Haneda Y et al (2008) Thermochemical transformation of glucose to 1,6-anhydroglucose in high-temperature steam. Carbohydr Res 343:848–854

    Article  CAS  Google Scholar 

  29. Köll P, Borchers G, Metzger JO (1991) Thermal degradation of chitin and cellulose. J Anal Appl Pyrolysis 19:119–129

    Article  Google Scholar 

  30. Tanaka T, Nagai H, Noguchi M, et al. (2009) One-step conversion of unprotected sugars to β-glycosyl azides using 2-chloroimidazolinium salt in aqueous solution. Chem Commun 3378–3379

    Google Scholar 

  31. Tanaka T, Matsumoto T, Noguchi M et al (2009) Direct Transformation of unprotected sugars to Aryl 1-Thio-β-glycosides in aqueous media using 2-Chloro-1,3-dimethylimidazolinium chloride. Chem Lett 38:458–459

    Article  CAS  Google Scholar 

  32. Sarkar S, Sucheck SJ (2011) Comparing the use of 2-methylenenapthyl, 4-methoxybenzyl, 3,4-dimethoxybenzyl and 2,4,6-trimethoxybenzyl as N-H protecting groups for p-tolyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-1-thio-β-D-glucosides. Carbohydr Res 346:393–400

    Article  CAS  Google Scholar 

  33. Milhomme O, Dhénin SGY, Djedaïni-Pilard F et al (2012) Synthetic studies toward the anthrax tetrasaccharide: alternative synthesis of this antigen. Carbohydr Res 356:115–131

    Article  CAS  Google Scholar 

  34. Ennis SC, Fairbanks AJ, Slinn CA et al (2001) N-Iodosuccinimide-mediated intramolecular aglycon delivery. Tetrahedron 57:4221–4230

    Article  CAS  Google Scholar 

  35. Yasomanee JP, Demchenko AV (2014) Hydrogen bond mediated aglycone delivery: synthesis of linear and branched α-glucans. Angew Chem Int Ed 53:10453–10456

    Article  CAS  Google Scholar 

  36. Rye CS, Withers SG (2004) The synthesis of a novel thio-linked disaccharide of chondroitin as a potential inhibitor of polysaccharide lyases. Carbohydr Res 339:699–703

    Article  CAS  Google Scholar 

  37. Rempel BP, Withers SG (2008) Covalent inhibitors of glycosidases and their applications in biochemistry and biology. Glycobiology 18:570–586

    Article  CAS  Google Scholar 

  38. Drouin L, Cowley AR, Fairbanks AJ, Thompson AL (2008) 4-Methoxyphenyl 2,3,4,6-tetra-O-acetyl-1-thio-α-D-mannopyranoside. Acta Crystallogr E 64:o1401–o1401

    Article  CAS  Google Scholar 

  39. Pei Z, Dong H, Caraballo R, Ramström O (2007) Synthesis of positional thiol analogs of β-D-galactopyranose. Eur J Org Chem 4927–4934

    Google Scholar 

  40. Funabashi M, Arai S, Shinohara M (1999) Novel syntheses of diphenyl and/or trimethylene dithioacetals of mono- and oligosaccharides in 90% trifluoroacetic acid. J Carbohydr Chem 18:333–341

    Article  CAS  Google Scholar 

  41. Yanase M, Funabashi M (2000) Stereoselective 1,2-cis-1-thioglycosidation of aldohexoses with tert-butyl mercaptan in 90% trifluoroacetic acid. J Carbohydr Chem 19:53–66

    Article  CAS  Google Scholar 

  42. Yoshida N, Noguchi M, Tanaka T et al (2011) Direct dehydrative pyridylthio-glycosidation of unprotected sugars in aqueous media using 2-chloro-1,3-dimethylimidazolinium chloride as a condensing agent. Chem Asian J 6:1876–1885

    Article  CAS  Google Scholar 

  43. Hase S (2010) Pyridylamination as a means of analyzing complex sugar chains. Proc Jpn Acad Ser B 86:378–390

    Article  CAS  Google Scholar 

  44. Kallin E, Lonn H, Norberg T (1988) Derivatization procedures for reducing oligosaccharides, part 2: chemical transformation of 1-Deoxy-1-(4-trifluoroacetamidophenyl)aminoalditols. Glycoconj J 5:145–150

    Article  CAS  Google Scholar 

  45. Suzuki S, Fujimori T, Yodoshi M (2006) Recovery of free oligosaccharides from derivatives labeled by reductive amination. Anal Biochem 354:94–103

    Article  CAS  Google Scholar 

  46. Yoshida N, Fujieda T, Kobayashi A et al (2013) Direct introduction of detachable fluorescent tag into oligosaccharides. Chem Lett 42:1038–1039

    Article  CAS  Google Scholar 

  47. Lee YC, Lee RT (1995) Carbohydrate-protein interactions: basis of glycobiology. Acc Chem Res 28:321–327

    Article  CAS  Google Scholar 

  48. Lundquist JJ, Toone EJ (2002) The cluster glycoside effect. Chem Rev 102:555–578

    Article  CAS  Google Scholar 

  49. Lee RT, Lee YC (2000) Affinity enhancement by multivalent lectin-carbohydrate interaction. Glycoconj J 17:543–551

    Article  CAS  Google Scholar 

  50. Dam TK, Brewer CF (2010) Multivalent lectin—carbohydrate interactions, pp 139–164

    Google Scholar 

  51. Le Droumaguet B, Nicolas J (2010) Recent advances in the design of bioconjugates from controlled/living radical polymerization. Polym Chem 1:563

    Article  Google Scholar 

  52. Tanaka K, Siwu ERO, Minami K et al (2010) Noninvasive imaging of dendrimer-type N-glycan clusters. In Vivo dynamics dependence on oligosaccharide structure. Angew Chem Int Ed 49:8195–8200

    Article  CAS  Google Scholar 

  53. Poonthiyil V, Nagesh PT, Husain M et al (2015) Gold nanoparticles decorated with sialic acid terminated Bi-antennary N-glycans for the detection of influenza virus at nanomolar concentrations. ChemistryOpen 4:708–716

    Article  CAS  Google Scholar 

  54. Glunz PW, Hintermann S, Williams LJ et al (2000) Design and synthesis of Le y -bearing glycopeptides that mimic cell surface le y mucin glycoprotein architecture. J Am Chem Soc 122:7273–7279

    Article  CAS  Google Scholar 

  55. Yamamoto N, Tanabe Y, Okamoto R et al (2008) Chemical synthesis of a glycoprotein having an intact human complex-type sialyloligosaccharide under the boc and fmoc synthetic strategies. J Am Chem Soc 130:501–510

    Article  CAS  Google Scholar 

  56. Roy R, Tropper FD, Romanowska A (1992) New strategy in glycopolymer synthesis. Preparation of antigenic water-soluble poly(acrylamide-co-p-acrylamidophenyl beta-lactoside). Bioconjug Chem 3:256–261

    Article  CAS  Google Scholar 

  57. Fraser C, Grubbs RH (1995) Synthesis of glycopolymers of controlled molecular weight by ring-opening metathesis polymerization using well-defined functional group tolerant ruthenium carbene catalysts. Macromolecules 28:7248–7255

    Article  CAS  Google Scholar 

  58. Tanaka T, Inoue G, Shoda S-I, Kimura Y (2014) Protecting-group-free synthesis of glycopolymers bearing thioglycosides via one-pot monomer synthesis from free saccharides. J Polym Sci A 1(52):3513–3520

    Google Scholar 

  59. Gamblin DP, Garnier P, van Kasteren S et al (2004) Glyco-SeS: selenenylsulfide-mediated protein glycoconjugation—a new strategy in post-translational modification. Angew Chem Int Ed 116:846–851

    Article  Google Scholar 

  60. Bernardes GJL, Marston JP, Batsanov AS et al. (2007) A trisulfide-linked glycoprotein. Chem Commun 3145–3147

    Google Scholar 

  61. Brimble MA, Edwards PJ, Harris PWR et al (2015) Synthesis of the antimicrobial s-linked glycopeptide, glycocin F. Chem Eur J 21:3556–3561

    Article  CAS  Google Scholar 

  62. Driguez H (2001) Thiooligosaccharides as tools for structural biology. ChemBioChem 2:311–318

    Article  CAS  Google Scholar 

  63. Levengood MR, van der Donk WA (2007) Dehydroalanine-containing peptides: preparation from phenylselenocysteine and utility in convergent ligation strategies. Nat Protoc 1:3001–3010

    Article  Google Scholar 

  64. Galonić DP, van der Donk WA, Gin DY (2003) Oligosaccharide-peptide ligation of glycosyl thiolates with dehydropeptides: synthesis of S-linked mucin-related glycopeptide conjugates. Chem Eur J 9:5997–6006

    Article  Google Scholar 

  65. Thayer DA, Yu HN, Galan MC, Wong C-H (2005) A general strategy toward S-linked glycopeptides. Angew Chem Int Ed 44:4596–4599

    Article  CAS  Google Scholar 

  66. Bernardes GJL, Grayson EJ, Thompson S et al (2008) From disulfide- to thioether-linked glycoproteins. Angew Chem Int Ed 47:2244–2247

    Article  CAS  Google Scholar 

  67. Dondoni A, Massi A, Nanni P, Roda A (2009) A new ligation strategy for peptide and protein glycosylation: photoinduced thiol-ene coupling. Chem Eur J 15:11444–11449

    Article  CAS  Google Scholar 

  68. Crich D, Yang F (2008) Synthesis of neoglycoconjugates by the desulfurative rearrangement of allylic disulfides. J Org Chem 73:7017–7027

    Article  CAS  Google Scholar 

  69. Zhu X, Dere RT, Jiang J et al (2011) Synthesis of α-glycosyl thiols by stereospecific ring-opening of 1,6-anhydrosugars. J Org Chem 76:10187–10197

    Article  CAS  Google Scholar 

  70. Novoa A, Barluenga S, Serba C, Winssinger N (2013) Solid phase synthesis of glycopeptides using Shoda’s activation of unprotected carbohydrates. Chem Commun 49:7608–7610

    Article  CAS  Google Scholar 

  71. Györgydeák Z, Thiem J (2006) Synthesis and transformation of glycosyl azides. Adv Carbohydr Chem Biochem 60:103–182

    Article  Google Scholar 

  72. Kitamura M, Tashiro N, Miyagawa S, Okauchi T (2011) 2-Azido-1,3-dimethylimidazolinium salts: Efficient diazo-transfer reagents for 1,3-dicarbonyl compounds. Synthesis 1037–1044

    Google Scholar 

  73. Kitamura M, Kato S, Yano M et al (2014) A reagent for safe and efficient diazo-transfer to primary amines: 2-azido-1,3-dimethylimidazolinium hexafluorophosphate. Org Biomol Chem 12:4397–4406

    Article  CAS  Google Scholar 

  74. Kitamura M, Yano M, Tashiro N et al (2011) Direct synthesis of organic azides from primary amines with 2-Azido-1,3-dimethylimidazolinium hexafluorophosphate. Eur J Org Chem 2011:458–462

    Article  Google Scholar 

  75. Kitamura K, Shigeta M, Maezawa Y et al (2013) Preparation of L-vancosamine-related glycosyl donors. J Antibiot 66:131–139

    Article  CAS  Google Scholar 

  76. Kitamura M, Murakami K, Shiratake Y, Okauchi T (2013) Synthesis of α-arylcarboxylic acid amides from silyl enol ether via migratory amidation with 2-Azido-1,3-dimethylimidazolinium hexafluorophosphate. Chem Lett 42:691–693

    Article  CAS  Google Scholar 

  77. Kitamura M, Miyagawa S, Okauchi T (2011) Synthesis of α, α-diarylacetamides from benzyl aryl ketones using 2-azido-1,3-dimethylimidazolinium hexafluorophosphate. Tetrahedron Lett 52:3158–3161

    Article  CAS  Google Scholar 

  78. Kitamura M, Koga T, Yano M, Okauchi T (2012) Direct synthesis of organic azides from alcohols using 2-Azido-1,3-dimethyl-imidazolinium hexafluorophosphate. Synlett 23:1335–1338

    Article  CAS  Google Scholar 

  79. Kitamura M (2015) Synthesis Of 2-Azido-1,3-dimethylimidazolinium hexafluorophosphate (ADMP). Org Synth 92:171–181

    Article  CAS  Google Scholar 

  80. Lim D, Brimble MA, Kowalczyk R et al (2014) Protecting-group-free one-pot synthesis of glycoconjugates directly from reducing sugars. Angew Chem Int Ed 53:11907–11911

    Article  CAS  Google Scholar 

  81. Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064

    Google Scholar 

  82. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(i)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599

    Article  CAS  Google Scholar 

  83. Dondoni A (2007) Triazole: the keystone in glycosylated molecular architectures constructed by a click reaction. Chem-Asian J 2:700–708

    Article  CAS  Google Scholar 

  84. Wilkinson BL, Long H, Sim E, Fairbanks AJ (2008) Synthesis of arabino glycosyl triazoles as potential inhibitors of mycobacterial cell wall biosynthesis. Bioorg Med Chem Lett 18:6265–6267

    Article  CAS  Google Scholar 

  85. El Akri K, Bougrin K, Balzarini J et al (2007) Efficient synthesis and in vitro cytostatic activity of 4-substituted triazolyl-nucleosides. Bioorg Med Chem Lett 17:6656–6659

    Article  Google Scholar 

  86. Rossi LL, Basu A (2005) Glycosidase inhibition by 1-glycosyl-4-phenyl triazoles. Bioorg Med Chem Lett 15:3596–3599

    Article  CAS  Google Scholar 

  87. Wilkinson BL, Innocenti A, Vullo D et al (2008) Inhibition of carbonic anhydrases with glycosyltriazole benzene sulfonamides. J Med Chem 51:1945–1953

    Article  CAS  Google Scholar 

  88. Wilkinson BL, Bornaghi LF, Houston TA et al (2006) A novel class of carbonic anhydrase inhibitors: glycoconjugate benzene sulfonamides prepared by “click-tailing”. J Med Chem 49:6539–6548

    Article  CAS  Google Scholar 

  89. De las Heras FG, Alonso R, Alonso G (1979) Alkylating nucleosides. 1. Synthesis and cytostatic activity of N-glycosyl(halomethyl)-1,2,3-triazoles. A new type of alkylating agent. J Med Chem 22:496–501

    Google Scholar 

  90. De las Heras FG, Camarasa M-J (1982) Synthesis of Alkylating 1-Glycosyl-5-substituted 1,2,4-Triazoles 1. Nucleos Nucleot 1:45–56

    Google Scholar 

  91. Yeoh KK, Butters TD, Wilkinson BL, Fairbanks AJ (2009) Probing replacement of pyrophosphate via click chemistry; synthesis of UDP-sugar analogues as potential glycosyl transferase inhibitors. Carbohydr Res 344:586–591

    Article  CAS  Google Scholar 

  92. Li H, Aneja R, Chaiken I (2013) Click chemistry in peptide-based drug design. Molecules 18:9797–9817

    Article  CAS  Google Scholar 

  93. Tomabechi Y (2015) Synthesis of glycopeptides by click chemistry. Trends Glycosci Glycotechnol 27:63–65

    Article  Google Scholar 

  94. Wang H, Huang W, Orwenyo J et al (2013) Design and synthesis of glycoprotein-based multivalent glyco-ligands for influenza hemagglutinin and human galectin-3. Bioorg Med Chem 21:2037–2044

    Article  CAS  Google Scholar 

  95. Hanisch F-G, Muller S (2000) MUC1: the polymorphic appearance of a human mucin. Glycobiology 10:439–449

    Article  CAS  Google Scholar 

  96. Sherblom AP, Moody CE (1986) Cell surface sialomucin and resistance to natural cell-mediated cytotoxicity of rat mammary tumor ascites cells. Cancer Res 46:4543–4546

    CAS  Google Scholar 

  97. Kaiser A, Gaidzik N, Westerlind U et al (2009) A synthetic vaccine consisting of a tumor-associated sialyl-T N-MUC1 tandem-repeat glycopeptide and tetanus toxoid: induction of a strong and highly selective immune response. Angew Chem Int Ed 48:7551–7555

    Article  CAS  Google Scholar 

  98. Lakshminarayanan V, Thompson P, Wolfert MA et al (2012) Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine. Proc Natl Acad Sci 109:261–266

    Article  CAS  Google Scholar 

  99. Rising TWDF, Heidecke CD, Moir JWB et al (2008) Endohexosaminidase-catalysed glycosylation with oxazoline donors: fine tuning of catalytic efficiency and reversibility. Chem Eur J 14:6444–6464

    Article  CAS  Google Scholar 

  100. Seko A, Koketsu M, Nishizono M et al (1997) Occurrence of a sialylglycopeptide and free sialylglycans in hen’s egg yolk. Biochim Biophys Acta - Gen Subj 1335:23–32

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony J. Fairbanks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lim, D., Fairbanks, A.J. (2018). Selective Transformations of the Anomeric Centre in Water Using DMC and Derivatives. In: Witczak, Z., Bielski, R. (eds) Coupling and Decoupling of Diverse Molecular Units in Glycosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-65587-1_5

Download citation

Publish with us

Policies and ethics