Skip to main content

Synthetic Antitumor Vaccines Through Coupling of Mucin Glycopeptide Antigens to Proteins

  • Chapter
  • First Online:
  • 608 Accesses

Abstract

The requirements for coupling reactions of carbohydrate molecules very much depend upon the biological recognition processes that should be investigated and upon the target structures of the desired carbohydrate ligand. If the carbohydrate conjugate itself is the recognized ligand, as for example, the binding site of a P-selectin ligand comprising sialyl-LewisX and a specific peptide sequence, the natural glycoside bond must be installed. A stereoselective and regioselective block glycosylation between a sialyl-LewisX trichloroacetimidate and a partially deprotected Thomsen–Friedenreich antigen derivative was developed to achieve this aim. In contrast, the coupling reactions by which glycopeptides from tumor-associated glycoproteins are conjugated to immune stimulating components in order to afford efficient vaccines can entail artificial linkages as long as they do not interfere with the immune reactions. For example, the coupling of glycophorin glycopeptides to bovine serum albumin was successfully achieved by carboxylic activation with a water-soluble carbodiimide in the presence of a supernucleophilic additive. This conjugation method is only recommendable if the glycopeptide does not contain several carboxylic and/or amino functions. The photochemically or radical initiator promoted thiol-ene coupling succeeded in couplings of MUC1 glycopeptide antigens to bovine serum albumin, however, is accompanied by oxidative disulfide formation. The conjugation of glycopeptide antigens from the tandem repeat region of the tumor-associated mucin MUC1 to bovine serum albumin or tetanus toxoid is efficiently accomplished using diethyl squarate as the coupling reagent. The intermediate squaric monoamide esters can be isolated and characterized, and then applied to a mild connecting process to the carrier proteins. The MUC1 glycopeptide-tetanus toxoid conjugates proved to be particularly useful vaccines. They induce extraordinarily strong immune responses in mice. The induced antibodies are prevailingly of the IgG1 isotype and show efficient binding to the glycoproteins exposed on epithelial tumor cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Landsteiner K (1901) Ueber Agglutinationserscheinungen normalen menschlichen Blutes. Wiener Kl. Wochenschrift 14:1132–1134

    Google Scholar 

  2. Lemieux RU (1989) The origin of the specificity in the recognition of oligosaccharides by proteins. Chem Soc Rev 18:347–374

    Article  CAS  Google Scholar 

  3. Bundle DA, Nitz M, Wu Y, Sadowska JM (2008) A uniquely small, protective carbohydrate epitope may yield a conjugate vaccine for candida albicans. ACS Symp Ser 989:163–183

    Article  CAS  Google Scholar 

  4. Etzler ME, Kabat EA (1970) Purification and characterization of a lectin (plant hemagglutinin) with blood group A specificity from Dolichos biflorus. Biochemistry 9:869–877

    Article  CAS  Google Scholar 

  5. Lis H, Sharon N (1998) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98:637–674

    Article  CAS  Google Scholar 

  6. Simanek EE, McGarvey GJ, Jablonowski JA, Wong C-H (1998) Selectin-Carbohydrate interactions: from natural ligands to designed mimics. Chem Rev 98:833–882

    Article  CAS  Google Scholar 

  7. Dondoni A, Massi A, Nanni P, Roda A (2009) A new ligation strategy for peptide and protein glycosylation: photoinduced thiol-ene coupling. Chem Eur J 15:11444–11449

    Article  CAS  Google Scholar 

  8. Lin YA, Chalker JM, Davis BG (2009) Olefin metathesis for site-selective protein modifiction. ChemBioChem 10, 959–969

    Google Scholar 

  9. Lee DJ, Sung-Hyun Yang S-H, Williams GM, Brimble MA (2012) Synthesis of multivalent neoglyconjugates of MUC1 by the conjugation of carbohydrate-centered, triazole-linked glycoclusters to MUC1 peptides using click chemistry. J Org Chem 77:7564–7571

    Article  CAS  Google Scholar 

  10. Doll F, Buntz A, Späte A-K, Schart VF, Timper A, Schrimpf W, Hauck CR, Zumbusch A, Wittmann V (2016) Visualization of protein-specific glycosylation inside living cells. Angew Chem Int Ed 55:2262–2266

    Article  CAS  Google Scholar 

  11. Braun P, Davies GM, Price MR, Williams PM, Tendler SPJ, Kunz H (1998) Effects of glycosylation on fragments of tumor associated human epithelial mucin MUC1. Bioorg Med Chem 6:1531–1545

    Article  CAS  Google Scholar 

  12. Coltart DM, Royyuru AK, Willaims LJ, Glunz PW, Sames D, Kuduk SD, Schwarz JB, Chen X-T, Danishefsky SJ, Live DH (2002) Principles of mucin architecture: structural studies on synthetic glycopeptides bearing clustered Mono-, Di-, Tri-, and hexasaccharide glycodomains. J Am Chem Soc 124:9833–9844

    Article  CAS  Google Scholar 

  13. Corzana F, Busto JH, Garzia de Luis M, Jimenez-Barbero J, Avenoza A, Peregrina M (2009) The nature and sequence of the amino acid aglycone strongly modulates the conformation and dynamics effects of tn antigen’s clusters. Chem Eur J 15:3863–3874

    Article  CAS  Google Scholar 

  14. Kuhn A, Kunz H (2007) Saccharide-induced peptide conformation in glycopeptides of the recognition region of li-cadherin. Angew Chem Int Ed 46:454–458

    Article  CAS  Google Scholar 

  15. Hashimoto R, Fujitani N, Takegawa Y, Kurogochi M, Matsushita T, Naruchi K, Ohyabu N, Hinou H, Gao XD, Manri N, Satake H, Kaneko A, Sakamoto T, Nishimura S-I (2011) An efficient approach for the characterization of mucin-typeglycopeptides: the effect of O-glycosylation on the conformation of synthetic mucin peptides. Chem Eur J 17:2393–2404

    Article  CAS  Google Scholar 

  16. Bogert A, Heimburg-Molinaro J, Song X, Lasanjak Y, Ju T, Liu M, Thompson P, Raghupati G, Barany G, Smith DF, Cummings RD, Live D (2012) Deciphering structural elements of mucin glycoprotein recognition. ACS Chem Biol 7:1031–1039

    Article  Google Scholar 

  17. Lijun X, Ramachandran V, McDaniel JM, Nguyen KN, Cummings RD, McEver RP (2003) N-terminal residues in murine P-selectin glycoprotein ligannd-1 required for binding to murine P-selectin. Blood 101:552–559

    Article  Google Scholar 

  18. Gaidzik N, Westerlind U, Kunz H (2013) The development of synthetic antitumor vaccines from mucin glycopeptide antigens. Chem Soc Rev 42:4421–4442

    Article  CAS  Google Scholar 

  19. Angiari S, Constantin G (2013) Selectins and their ligands as potential immunotherapeutic targets in neurological diseases. Immunotherapy 5:1207–1220

    Article  CAS  Google Scholar 

  20. Phillips ML, Nudelman E, Gaeta FC, Perez M, Singhal AK, Hakomori S, Paulson JC (1990) ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand. Sialyl-Lex. Science 250:1130–1132

    CAS  Google Scholar 

  21. Springer A (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314

    Article  CAS  Google Scholar 

  22. Coupland LA, Parish CR (2014) Platelets, selectins, and the control of tumor metastasis. Semin Oncol 41:422–434

    Article  CAS  Google Scholar 

  23. Leppänen A, Mehtal P, Ouyang Y-B, Ju T, Helin J, Moore KL, van Die I, Canfield WM, McEver RP, Cummings RD (1999) A novel glycosulfopeptide binds to p-selectin and inhibits leukocyte adhesion to P-selectin. J BIol Soc 274:24838–24848

    Google Scholar 

  24. Sprengard U, Kretzschmar G, Bartnik E, Hüls C, Kunz H (1995) Synthesis of an RGD Sialyl-LewisX glycoconjugate: a new highly active ligand for P-selectin. Angew Chem Int Ed 34:990–993

    Article  CAS  Google Scholar 

  25. Koeller KM, Smith MEB, Wong C-H (2000) Tyrosine sulfation on a PSGL-1 glycopeptide influences the reactivity of glycosyltransferases responsible responsible for synthesis of the attached O-Glycan. J Am Chem Soc 122:742–743

    Article  CAS  Google Scholar 

  26. Brocke C, Kunz H (2004) Synthetic tumor-associated glycopeptide antigens from the tandem repeat of epithelial mucin MUC4. Synthesis, 525–542

    Google Scholar 

  27. Baumann K, Kowalczyk D, Kunz H (2008) Total synthesis of the glycopeptide recognition domain of the P-Selectin glycoprotein ligand 1. Angew Chem Int Ed 47:3445–3449

    Article  CAS  Google Scholar 

  28. Kolb HC, Ernst B (1997) Development of tools for the design of selectin antagonists. Chem Eur J 3:1571–1578

    Article  CAS  Google Scholar 

  29. Baumann K, Kowalczyk D, Gutjahr T, Pieczyk M, Jones C, Wild MK, Vestweber D, Kunz H (2009) Sulfated and non-sulfated glycopeptide recognition domain of P-selectin glycoprotein ligand 1 and their binding to P- and E-selectin. Angew Chem Int Ed 48:3174–3178

    Article  CAS  Google Scholar 

  30. Review: Springer GF (1984) Tn and T, general carcinoma autoantigens. Science 224, 1198–1206

    Google Scholar 

  31. Kunz H, Birnbach S (1986) Synthesis of O-glycopeptides of the tumor-associated Tn- and T-antigen type and their binding to bovine serum albumin. Angew Chem Int Ed 25:360–362

    Article  Google Scholar 

  32. König W, Geiger R (1970) Eine neue methode zur synthese von peptiden: aktivierung der carboxylgruppe mit dicyclohexylcarbodiimid unter zusatz von 1-hydroxy-benzotriazol. Chem Ber 103:788–798

    Article  Google Scholar 

  33. Kunz H, von dem Bruch K (1994) Neoglycoproteins from synthetic glycopeptides. Methods Enzymol 247:3–30

    Article  CAS  Google Scholar 

  34. Bremer PT, Kimishima A, Schlosburg JE, Zhou B, Collins KC, Janda KD (2016) Combatting synthetic designer opioids: a conjugate vaccine ablates lethal doses of fentanyl class drugs. Angew Chem Int Ed 55:3772–3775

    Article  CAS  Google Scholar 

  35. (a) Dippold W, Steinborn A, Meyer zum Büschenfelde K-H (19990) The role of the thomsen-friedenreich antigen as a tumor-associated molecule. Environ. Health Persp 88, 255–257. (b) Steinborn A (1990) Dissertation: definition von Proliferations- und Differenzierungsmolekülen auf menschlichen Tumorzellen. Universtät Mainz, p. 73

    Google Scholar 

  36. Review: Beatson RE, Taylor-Papadimitriou J, Burchell JM (2010) MUC1 Immunotherapy. Immunotherapy 2, 305–327

    Google Scholar 

  37. Zotter S, Hageman PC, Lossnitzer A, van den Tweel J, Hilkens J, Mooi WJ, Hilgers J (1988) Monoclonal antibodies to epithelial sialomucins recognize epitopes at different cellular sites in adenolymphomas of the parotid gland. Int J Cancer Suppl 3, 38–44

    Google Scholar 

  38. Gendler SJ, Lancaster CA, Taylor-Papadimitriou J, Duhig T, Peat N, Burchell J, Pemberton L, Lalani EN, Wilson D (1990) Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem 265, 15286–15293

    Google Scholar 

  39. Burchell JM, Mungul A, Taylor-Papadimitiou J (2001) O-Linked glycosylation in the mammary gland: changes that occur during malignancy. J Mammary Gland Biol Neoplasia 6:355–364

    Article  CAS  Google Scholar 

  40. Hanisch F-G, Peter-Katalinic J, Egge H, Dabrowski U, Uhlenbruck G (1990) Structures of acidic O-linked polylactosaminoglycans on human skim milk mucins. Glycoconjugate J 7:525–543

    Article  CAS  Google Scholar 

  41. Brockhausen I, Yang JM, Burchell J, Whitehouse C, Taylor-Papadimitriou J (1995) Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur J Biochem 233:607–617

    Article  CAS  Google Scholar 

  42. Review: Becker T, Dziadek S, Wittrock S, Kunz H (2006) Synthetic glycopeptides from the mucin family as potential tools in cancer immunotherapy. Curr Cancer Drug Targets 6, 491–517

    Google Scholar 

  43. Liebe B, Kunz H (1997) Solid-phase synthesis of a Sialyl-Tn glycoundecapeptide of the MUC1 repeating unit. Helv Chim Acta 80:1473–1482

    Article  CAS  Google Scholar 

  44. Kunz H, Unverzagt C (1988) Protective group dependent stability of intersaccharide bonds. Synthesis of fucosyl chitobiose glycopeptides. Angew Chem Int Ed 27:1697–1699

    Article  Google Scholar 

  45. Sjölin P, Elofsson M, Kihlberg J (1996) Removal of acyl protective groups from glycopeptides. Base does not epimerize peptide stereocenters, and β-elimination is slow. J Org Chem 61:560–565

    Article  Google Scholar 

  46. Dziadek S, Brocke C, Kunz H (2004) Biomimetic synthesis of the tumor-associated (2,3)-sialyl-T antigen and ist incorporation into glycopeptide antigens from the mucins MUC1 and MUC4. Chem Eur J 10:4150–4162

    Article  CAS  Google Scholar 

  47. Kaiser A, Gaidzik N, Westerlind U, Kowalczyk D, Hobel A, Schmitt E, Kunz H (2009) A synthetic vaccine consisting of a tumor-associated Sialyl-Tn-MUC1 tandem repeat glycopeptide and tetanus toxoid: induction of a strong and highly selective immune response. Angew Chem Int Ed 48:7551–7555

    Article  CAS  Google Scholar 

  48. Carpino LA (1993) 1-Hydroxy-benzotriazole. An efficient peptide coupling additive. J Am Chem Soc 115:4397–4398

    Article  CAS  Google Scholar 

  49. Yoshitake S, Imagawa M, Ishikawa E, Niitsu Y, Urushizaki I, Nishiura M, Kanazawa R, Kurosaki H, Tachibana S, Nakazawa N, Ogawa H (1982) Mild and efficient conjugation of rabbit Fab’ and horseradish peroxidase using a maleimide compound and its use for enzyme immunoassay. J Biochem 92:1413–1424

    Article  CAS  Google Scholar 

  50. Posner T (1905) Beiträge zur Kenntniss der ungesättigten Verbindungen. II. Ueber die Addition von Mercaptanen an ungesättigte Kohlenwasserstoffe. Ber Dtsch Chem Ges 38:646–657

    Article  Google Scholar 

  51. Wittrock S, Becker T, Kunz H (2007) Synthetic vaccines of tumor-associated glycopeptide antigens by immune-compatible thioether linkage to bovine serum albumin. Angew Chem Int Ed 46:5226–5230

    Article  CAS  Google Scholar 

  52. Dondoni A, Massi A, Nanni P, Roda A (2009) A new ligation strategy for peptide and protein glycosylation: photoinduced thiol–ene coupling. Chem Eur J 15:11444–11449

    Article  CAS  Google Scholar 

  53. Glaffig M, Kunz H (2016) unpublished experiments

    Google Scholar 

  54. Tietze LF, Arlt M, Beller M, Glüsenkamp K-H, Jäde E, Rajewski MF (1991) Squaric acid diethyl ester: a new coupling reagent for the formation of drug bio-polymer conjugates. Chem Ber 124:1215–1221

    Article  CAS  Google Scholar 

  55. Dziadek S, Kowalzcyk D, Kunz H (2005) Synthetic vaccines consisting of tumor-associated MUC1 glycopeptide antigens and bovine serum albumin. Angew Chem Int Ed 44:7624–7630

    Article  CAS  Google Scholar 

  56. Palitzsch B, Hartmann S, Stergiou N, Glaffig M, Schmitt E, Kunz H (2014) A fully synthetic four-component antitumor vaccine consisting of a mucin glycopeptide antigen combined with three different T-helper cell epitopes. Angew Chem Int Ed 53:14245–14249

    Article  CAS  Google Scholar 

  57. Keil S, Claus C, Dippold W, Kunz H (2001) Towards the development of antitumor vaccines: a synthetic conjugate of a tumor-associated MUC1 glycopeptide antigen and a tetanus toxin epitope. Angew Chem Int Ed 40:366–369

    Article  CAS  Google Scholar 

  58. Wilkinson BL, Day S, Malins LR, Apostoplopoulos V, Payne RJ (2011) Self-adjuvanting multicomponent cancer vaccine candidates combining per-glycosylated MUC1 glycopeptides and the Toll-like receptor 2 agonist Pam3CysSer. Angew Chem Int Ed 50, 1635–1639

    Google Scholar 

  59. Cai H, Chen M-S, Sun Z-Y, Zhao Y-F, Kunz H, Li Y-M (2013) Self-adjuvanting synthetic antitumor vaccine from MUC1 glycopeptides conjugated to T-cell epitopes from tetanus toxoid. Angew Chem Int Ed 52:6106–6110

    Article  CAS  Google Scholar 

  60. Dziadek S, Hobel A, Schmitt E, Kunz H (2005) A fully synthetic vaccine consisting of a tumor-associated glycopeptide antigen and a T-cell epitope for the induction of a highly specific humoral immune response. Angew Chem Int Ed 44:7630–7635

    Article  CAS  Google Scholar 

  61. Hoffmann-Röder A, Kaiser A, Wagner S, Gaidzik N, Kowalczyk D, Westerlind U, Gerlitzki B, Schmitt E, Kunz H (2010) Synthetic antitumor vaccines from tetanus toxoid conjugates of MUC1 glycopeptides with the Thomsen-Friedenreich antigen and a fluorine substituted analogue. Angew Chem Int Ed 49:8498–8503

    Article  Google Scholar 

  62. Gaidzik N, Kaiser A, Kowalczyk D, Westerlind U, Gerlitzki B, Sinn HP, Schmitt E, Kunz H (2011) Synthetic antitumor vaccines containing MUC1 glycopeptides with two immunodominant domains—induction of a strong immune response against breast tumor tissues. Angew Chem Int Ed 50:99778–99981

    Article  Google Scholar 

  63. Palitzsch B, Gaidzik N, Stergiou N, Stahn S, Hartmann S, Gerlitzki B, Teusch N, Flemming P, Schmitt E, Kunz H (2016) A synthetic glycopeptide vaccine for the induction of a monoclonal antibody that differentiates between normal and tumor mammary cells and enables the diagnosis of human pancreatic cancer. Angew Chem Int Ed 55:2894–2898

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Kunz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glaffig, M., Kunz, H. (2018). Synthetic Antitumor Vaccines Through Coupling of Mucin Glycopeptide Antigens to Proteins. In: Witczak, Z., Bielski, R. (eds) Coupling and Decoupling of Diverse Molecular Units in Glycosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-65587-1_2

Download citation

Publish with us

Policies and ethics