Skip to main content

Example of Sacrificial Unit Using Two Different Click Reactions in Coupling and Decoupling (CAD) Chemistry

  • Chapter
  • First Online:
Coupling and Decoupling of Diverse Molecular Units in Glycosciences

Abstract

An example of a specific coupling and decoupling (CAD) chemistry is described. It takes advantage of propargyl acrylate as a sacrificial unit (SU). The addition of a selected compound representing a molecular unit equipped with an azide functionality to the terminal triple bond of the SU and another compound acting as a molecular unit equipped with a thiol functionality to the conjugated double bond of the SU proceeded at very good yields. The construct containing two molecular units can be decoupled using a few different reactions and the decoupling can take place at two positions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bielski R, Witczak Z (2013) Strategies for coupling molecular units if subsequent decoupling is required. Chem Rev 113:2205–2222

    Article  CAS  Google Scholar 

  2. Bielski R, Witczak ZJ (2013) Paradigm and advantage of carbohydrate click chemistry strategy for future decoupling. In: Witczak ZJ, Bielski R (eds) Click chemistry in glycoscience: new developments and strategies, Wiley, New Jersey, pp 3–30

    Google Scholar 

  3. Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed Engl 48(38):6974–6998

    Article  CAS  Google Scholar 

  4. Bertozzi CR (2011) A decade of bioorthogonal chemistry. Acc Chem Res 44(9):651–653

    Article  CAS  Google Scholar 

  5. Knight JC, Cornelissen B (2014) Bioorthogonal chemistry: implications for pretargeted nuclear (PET/SPECT) and therapy. Am J Nucl Med Mol Imaging 4(2):96–113

    CAS  Google Scholar 

  6. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021

    Article  CAS  Google Scholar 

  7. Thirumurugan P, Matosiuk D, Jozwiak K (2013) Click chemistry for drug development and diverse chemical—biology applications. Chem Rev 113:4905–4979

    Article  CAS  Google Scholar 

  8. Cruz CM, Ortega-Muñoz M, López-Jaramillo FJ, Hernández-Mateo F, Blanco V, Santoyo-González F (2016) Vinyl Sulfonates. A click function for coupling and decoupling chemistry and their applications. Adv Synth Catal 358:3394–3413

    Google Scholar 

  9. Xavier NM, Lucas SD, Jorda R, Schwarz S, Loesche A, Csuk R, Oliveira MC (2015) Synthesis and evaluation of the biological profile of novel analogues of nucleosides and of potential mimetics of sugar phosphates and nucleotides. Synlett 26:2663–2672

    Article  CAS  Google Scholar 

  10. Weiss JT, Carragher NO, Unciti-Broceta A (2015) Palladium-mediated dealkylation of N-propargyl-floxuridine as a bioorthogonal oxygen-independent prodrug strategy. Sci Rep 5:9329–9335

    Article  CAS  Google Scholar 

  11. Zhang G, Li J, Xie R, Fan X, Liu Y, Zheng S, Ge Y, Chen PR (2016) Bioorthogonal chemical activation of kinases in living systems. ACS Cent Sci 2:325–331

    Article  CAS  Google Scholar 

  12. Nair DP, Podgórski M, Chatani S, Gong T, Xi W, Fenoli CR, Bowman CN (2013) The thiol-michael addition click reaction: a powerful and widely used tool in materials chemistry. Chem Mater 26:724–744

    Article  Google Scholar 

  13. Kobayashi S, Ogawa C, Kawamura M, Sugiura M (2001) A Ligand-accelerated chiral lewis acid catalyst in asymmetric michael addition of thiols to α,β-unsaturated carbonyls. Synlett 2001:983–985

    Article  Google Scholar 

  14. Ranu BC, Dey SS, Samanta S (2005) Indium(III) chloride—catalyzed Michael addition of thiols to chalcones: a remarkable solvent effect. ARKIVOC 2005:44–50

    Article  Google Scholar 

  15. Abe AMM, Sauerland SJK, Koskinen AMP (2007) Highly enantioselective conjugate addition of thiols using mild scandium triflate catalysis. J Org Chem 72:5411–5413

    Article  CAS  Google Scholar 

  16. Li GZ, Randev RK, Soeriyadi AH, Rees G, Boyer C, Tong Z, Davis TP, Becer CR, Haddleton DM (2010) Investigation into thiol-(meth)acrylate Michael addition reactions using amine and phosphine catalysts. Polymer Chem 1:1196–1204

    Article  CAS  Google Scholar 

  17. Zahouily A, Abrouki Y, Rayadh A, Sebti S, Dhimane H, David M (2003) Fluorapatite: efficient catalyst for the Michael addition. Tet Lett 44:2463–2465

    Article  CAS  Google Scholar 

  18. Lenardão EJ, Trecha DO, Ferreira PdC, Jacob RG, Perin G (2009) Green Michael addition of thiols to electron deficient alkenes using KF/Alumina and recyclable solvent or solvent-free conditions. J Braz Chem Soc 20:93–99

    Article  Google Scholar 

  19. Fang X, Li J, Wang Ch-J (2013) Organocatalytic asymmetric sulfa-michael addition of thiols to α,β-unsaturated hexafluoroisopropyl esters: expeditious access to (R)-thiazesim. Org Lett 15:3448–3451

    Article  CAS  Google Scholar 

  20. Liu Y, Sun B, Wang B, Wakem M, Deng L (2009) Catalytic asymmetric conjugate addition of simple alkyl thiols to α,β-unsaturated N-acylated oxazolidin-2-ones with bifunctional catalysts. J Am Chem Soc 131:418–419

    Article  CAS  Google Scholar 

  21. Gao S, Tzeng T, Sastry MNV, Chu C-M, Liu JT, Lin Ch, Yao C-F (2006) Iodine catalyzed conjugate addition of mercaptans to α, β-unsaturated carboxylic acids under solvent-free conditions. Tet Lett 47:1889–1893

    Article  CAS  Google Scholar 

  22. Luh T-Y, Ni Z-J (1990) Transition-metal-mediated C–S bond cleavage reactions. Synthesis 1990:89–103

    Article  Google Scholar 

  23. Farmer SC, Berg SH (2008) Ring contracting sulfur extrusion from oxidized phenothiazine ring systems. Molecules 13:1345–1352

    Article  CAS  Google Scholar 

  24. Morales DP, Taylor AS, Farmer SC (2010) Desulfurization of dibenzothiophene and oxidized dibenzothiophene ring systems. Molecules 15:1265–1269

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roman Bielski or Zbigniew J. Witczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bielski, R., Witczak, Z.J., Mencer, D. (2018). Example of Sacrificial Unit Using Two Different Click Reactions in Coupling and Decoupling (CAD) Chemistry. In: Witczak, Z., Bielski, R. (eds) Coupling and Decoupling of Diverse Molecular Units in Glycosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-65587-1_13

Download citation

Publish with us

Policies and ethics