Advertisement

Nonequilibrium Physics Aspects of Probabilistic Cellular Automata

  • Christian MaesEmail author
Chapter
Part of the Emergence, Complexity and Computation book series (ECC, volume 27)

Abstract

Probabilistic cellular automata (PCA) are used to model a variety of discrete spatially extended systems undergoing parallel-updating. We propose an embedding of a number of classical nonequilibrium concepts in the PCA-world. We start from time-symmetric PCA, satisfying detailed balance, and we give their Kubo formula for linear response. Close-to-detailed balance we investigate the form of the McLennan distribution and the minimum entropy production principle. More generally, when time-symmetry is broken in the stationary process, there is a fluctuation symmetry for a corresponding entropy flux. For linear response around nonequilibria we also give the linear response which is now not only entropic in nature.

Keywords

Nonequilibrium PCA Discrete time physics Minimum entropy production principle 

References

  1. 1.
    Wolfram, S.: A new kind of Science. Wolfram Media (2002)Google Scholar
  2. 2.
    ’t Hooft, G.: Hamiltonian formalism for integer-valued variables and integer time steps and a possible application in quantum physics, Report-no: ITP-UU-13/29, SPIN-13/21. arXiv:1312.1229
  3. 3.
    Ruelle, D.: Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys. 95, 393 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Sekimoto, K.: Stochastic Energetics. Lecture Notes in Physics. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Maes, C., van Wieren, M.H.: Thermoelectric phenomena via an interacting particle system. J. Phys. A: Math. Gen. 38, 005–1020 (2005)CrossRefzbMATHGoogle Scholar
  6. 6.
    Ilachinski, A.: Cellular Automata: A Discrete Universe. World Scientific Pub Co Inc, Singapore (30 July 2001). Reprint editionGoogle Scholar
  7. 7.
    Dobrushin, R., Kryukov, V., Toom, A. (eds.): Stochastic cellular systems: ergodicity, memory, morphogenesis. Nonlinear Science: Theory and Applications. Manchester University Press, Manchester (1990)Google Scholar
  8. 8.
    Goldstein, S., Kuik, R., Lebowitz, J.L., Maes, C.: From PCA to equilibrium system and back. Commun. Math. Phys. 125, 71–79 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Georges, A., Le Doussal, P.: From equilibrium spin models to probabilistic cellular automata. J. Stat. Phys. 54, 1011–1064 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Toffoli, T., Margolus, N.H.: Invertible cellular automata: a review. Phys. D 45, 229–253 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Dai Pra, P., Scoppola, B., Scoppola, E.: Sampling from a Gibbs measure with pair interaction by means of PCA. J. Stat. Phys. 149(4), 722–737 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lancia, C., Scoppola, B.: Equilibrium and non-equilibrium Ising models by means of PCA. J. Stat. Phys. 153(4), 641–653 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Domany, E., Kinzel, W.: Equivalence of Cellular Automata to Ising Models and Directed Percolation. Phys. Rev. Lett. 53, 311 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Stavskaja, O.N.: Gibbs invariant measures for Markov chains on finite lattices with local interaction. Math. USSR Sb. 21, 395 (1973)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255 (1966)CrossRefzbMATHGoogle Scholar
  16. 16.
    Maes, C.: The fluctuation theorem as a Gibbs property. J. Stat. Phys. 95, 367–392 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Maes, C., Redig, F., Van Moffaert, A.: On the definition of entropy production, via examples. J. Math. Phys. 41, 1528–1554 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694 (1995)CrossRefGoogle Scholar
  19. 19.
    Jiu-li, L., Van den Broeck, C., Nicolis, G.: Z. Phys. B Conden. Matter 56, 165 (1984)CrossRefGoogle Scholar
  20. 20.
    Maes, C., Netočný, K.: Minimum entropy production principle from a dynamical fluctuation law. J. Math. Phys. 48, 053306 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Maes, C., Netočný, K.: Rigorous meaning of McLennan ensembles. J. Math. Phys. 51, 015219 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Baiesi, M., Maes, C., Wynants, B.: Nonequilibrium linear response for Markov dynamics, I: jump processes and overdamped diffusions. J. Stat. Phys. 137, 1094–1116 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Baiesi, M., Maes, C.: An update on nonequilibrium linear response. New J. Phys. 15, 013004 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Instituut voor Theoretische FysicaKU LeuvenLeuvenBelgium

Personalised recommendations