Synchronization in Interacting Reinforced Stochastic Processes

  • Pierre-Yves Louis
  • Ida G. MinelliEmail author
Part of the Emergence, Complexity and Computation book series (ECC, volume 27)


We present a family of interacting stochastic processes introduced in [13] whose individual dynamics follow a reinforcement updating rule. This is a natural generalization of PCA dynamics on a continuous spin space. The interaction changes the long-time behavior of each process and the speed of evolution, producing a phenomenon of synchronization.


Generalized PCA with continuous spin space Synchronization Reinforced stochastic processes Pólya urns Mean field interaction 


  1. 1.
    Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77(1), 137 (2005)CrossRefGoogle Scholar
  2. 2.
    Aletti, G., Ghiglietti, A.: Interacting generalized Friedman’s urn systems. Stoch. Process. Appl. (2016)Google Scholar
  3. 3.
    Aletti, G., Crimaldi, I., Ghiglietti, A.: Synchronization of reinforced stochastic processes with a network-based interaction. arXiv:1607.08514
  4. 4.
    Alonso-Sanz, R.: Discrete Systems with Memory. World Scientific Series on Nonlinear Science Series A, vol. 75. World Scientific, Singapore (2011)Google Scholar
  5. 5.
    Arenas, A., Díaz-guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks 469(3), 93–153 (2008)Google Scholar
  6. 6.
    Berglund, N., Fernandez, B., Gentz, B.: Metastability in interacting nonlinear stochastic differential equations: I. From weak coupling to synchronization. Nonlinearity 20(11), 2551–2581 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bertini, L., Giacomin, G., Poquet, C.: Synchronization and random long time dynamics for mean-field plane rotators. Probab. Theory Relat. Fields 1–61 (2013)Google Scholar
  8. 8.
    Birkner, M., Depperschmidt, A.: Survival and complete convergence for a spatial branching system with local regulation. Ann. Appl. Probab. 17(5/6), 1777–1807 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, N., Glazier, J.A., Alber, M.S.: A parallel implementation of the cellular potts model for simulation of cell-based morphogenesis, pp. 58–67Google Scholar
  10. 10.
    Collet, F., Dai Pra, P., Sartori, E.: A simple mean field model for social interactions: dynamics, fluctuations, criticality, pp. 1–37 (2010)Google Scholar
  11. 11.
    Crimaldi, I., Dai Pra, P., Minelli, I.G.: Fluctuation theorems for synchronization of interacting Polya urns. Stoch. Process. Appl. 126(3), 930–947 (2016)CrossRefzbMATHGoogle Scholar
  12. 12.
    Crimaldi, I., Dai Pra, P., Louis, P.Y., Minelli, I.G.: Syncronization and functional central limit theorems for interacting reinforced random walks (2016). arXiv:1602.06217
  13. 13.
    Dai Pra, P., Louis, P.Y., Minelli, I.G.: Synchronization via interacting reinforcement. J. Appl. Probab. 51(2), 556–568 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Davis, B.: Reinforced random walk. Probab. Theory Relat. Fields 84(2), 203–229 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Drossel, B., Schwabl, F.: Self-organized critical forest-fire model. Phys. Rev. Lett. 69(11), 1629–1632 (1992)CrossRefGoogle Scholar
  16. 16.
    Freedman, D.A.: Bernard Friedman’s urn. Ann. Math. Stat. 36(3), 956–970 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Friedman, B.: A simple urn model. Commun. Pure Appl. Math. 2(1), 59–70 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Jahnel, B., Kuelske, C.: Synchronization for discrete mean-field rotators. Electron. J. Probab. 19(14), 1–26 (2014)MathSciNetGoogle Scholar
  19. 19.
    Kaneko, K.: Simulating Spatiotemporal Chaos with Coupled Map Lattices. Springer Proceedings in Physics, pp. 260–271. Springer, Berlin (1992)Google Scholar
  20. 20.
    Launay, M.: Interacting urn models (2012). arXiv:1101.1410
  21. 21.
    Launay, M., Limic, V.: Generalized interacting urn models (2012). arXiv:1207.5635
  22. 22.
    Mahmoud, H.M.: Pólya Urn Models. CRC Press, Boca Raton (2008)CrossRefzbMATHGoogle Scholar
  23. 23.
    Métivier, M.: Semimartingales, de Gruyter Studies in Mathematics, vol. 2. Walter de Gruyter & Co., Berlin (1982)Google Scholar
  24. 24.
    Paganoni, A.M., Secchi, P.: Interacting reinforced-urn systems. Adv. Appl. Probab. 36(3), 791–804 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Pemantle, R.: A survey of random processes with reinforcement. Probab. Surv. 4(1–79), 25 (2007)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Pikovsky, A., Rosenblum, M., Kurths, J., Hilborn, R.C.: Synchronization: a universal concept in nonlinear science. Am. J. Phys. 70(6), 655–655 (2002)CrossRefGoogle Scholar
  27. 27.
    Sahasrabudhe, N.: Synchronization and fluctuation theorems for interacting Friedman urns. J. Appl. Probab. 53(4), 1221–1239 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Strogatz, S.: Review of sync: the emerging science of spontaneous order (2003)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques et Applications UMR 7348Université de Poitiers, CNRSPoitiersFrance
  2. 2.Dipartimento di Ingegneria e scienze dell’informazione e matematicaUniversitá dell’AquilaL’AquilaItaly

Personalised recommendations