Cellular Potts Models for Interacting Cell Populations: Mathematical Foundation, Challenges, and Future Prospects

  • Anja Voss-BöhmeEmail author
Part of the Emergence, Complexity and Computation book series (ECC, volume 27)


Cellular Potts models (CPMs) are extensions of asynchronous probabilistic cellular automata (PCA) developed specifically to model interacting cell populations. They constitute a modeling framework for the field of cell and tissue biology that is particularly useful when the details of intercellular interaction are essentially determined by the shape and the size of the individual cells as well as the length of the contact area between neighboring cells. In this chapter, the mathematical foundation of CPMs and their relation to PCA as well as to standard Markov chains are reviewed. On the basis of their mathematical properties, the challenges of applying CPMs for studying tissue organization from the cell-based approach are explained. In conclusion, future prospects and necessary developments are discussed from the mathematical and the modeling point of view.


Interacting cell systems Spatiotemporal tissue organization Cell migration Cell-based model 



The author thanks Andreas Deutsch for discussions and comments.


  1. 1.
    Alber, M., Chen, N., Lushnikov, P.M., Newman, S.A.: Continuous macroscopic limit of a discrete stochastic model for interaction of living cells. Phys. Rev. Lett. 99, 168102 (2007)CrossRefGoogle Scholar
  2. 2.
    Balter, A., Merks, R.M.H., Poplawski, N.J., Swat, M., Glazier, J.A.: The Glazier-Graner-Hogeweg model: extensions, future directions, and opportunities for further study. In: Anderson, A.R.A., Chaplain, M.A.J., Rejniak, K.A. (eds.) Single Cell-Based Models in Biology and Medicine. Mathematics and Biosciences in Interaction, pp. 151–167. Springer, Berlin (2007)CrossRefGoogle Scholar
  3. 3.
    Brémaud, P.: Markov chains, Gibbs Fields, Monte Carlo Simulation and Queues. Springer, Berlin (1999)zbMATHGoogle Scholar
  4. 4.
    Czirok, A., Varga, K., Mehes, E., Szabo, A.: Collective cell streams in epithelial monolayers depend on cell adhesion. New J. Phys. 15(7), 075006 (2013)CrossRefGoogle Scholar
  5. 5.
    Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation: Characterization, Applications, and Analysis. Birkhäuser, Boston (2005)zbMATHGoogle Scholar
  6. 6.
    Glazier, J.A., Balter, A., Poplawski, N.J.: Magnetization to morphogenesis: a brief history of the Glazier-Graner-Hogeweg model. In: Anderson, A.R.A., Chaplain, M.A.J., Rejniak, K.A. (eds.) Single Cell-Based Models in Biology and Medicine. Mathematics and Biosciences in Interaction, pp. 79–106. Springer, Berlin (2007)CrossRefGoogle Scholar
  7. 7.
    Glazier, J.A., Graner, F.: Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E. 47(3), 2128–2154 (1993)CrossRefGoogle Scholar
  8. 8.
    Guzzetti, F.: Stochastic lattice-based model: a biological application for contact inhibition. Master thesis, Universita degli Studi di Milano (2012)Google Scholar
  9. 9.
    Hogeweg, P.: Evolving mechanisms of morphogenesis: on the interplay between differential adhesion and cell differentiation. J. Theor. Biol. 203(4), 317–333 (2000)CrossRefGoogle Scholar
  10. 10.
    Landsberg, K.P., Farhadifar, R., Ranft, J., Umetsu, D., Widmann, T.J., Bittig, T., Said, A., Jülicher, F., Dahmann, C.: Increased cell bond tension governs cell sorting at the drosophila anteroposterior compartment boundary. Curr. Biol. 19(22), 1950–1955 (2009)CrossRefGoogle Scholar
  11. 11.
    Lebowitz, J.L., Maes, C., Speer, E.R.: Statistical mechanics of probabilistic cellular automata. J. Stat. Phys. 59(1–2), 117–170 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Li, J.F., Lowengrub, J.: The effects of cell compressibility, motility and contact inhibition on the growth of tumor cell clusters using the cellular potts model. J. Theor. Biol. 343, 79–91 (2014)CrossRefGoogle Scholar
  13. 13.
    Madras, N.N.: Lectures on Monte Carlo methods. Fields Institute Monographs. American Mathematical Society (2002)Google Scholar
  14. 14.
    Marée, A.F.M., Jilkine, A., Dawes, A., Grieneisen, V.A., Edelstein-Keshet, L.: Polarization and movement of keratocytes: a multiscale modelling approach. Bull. Math. Biol. 68(5), 1169–1211 (2006)CrossRefzbMATHGoogle Scholar
  15. 15.
    Nagai, T., Kawasaki, K., Nakamura, K.: Vertex dynamics of two-dimensional cellular patterns. J. Phys. Soc. Jpn 57(7), 2221–2224 (1988)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Nakajima, A., Ishihara, S.: Kinetics of the cellular Potts model revisited. New J. Phys. 13(3), 033035 (2011)CrossRefGoogle Scholar
  17. 17.
    Newman, T.J.: Modeling multicellular systems using subcellular elements. Math. Biosci. Eng. 2(3), 611–622 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ouchi, N.B., Glazier, J.A., Rieu, J., Upadhyaya, A., Sawada, Y.: Improving the realism of the cellular Potts model in simulations of biological cells. Physica A 329(3–4), 451–458 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sandersius, S.A., Weijer, C.J., Newman, T.J.: Emergent cell and tissue dynamics from subcellular modeling of active biomechanical processes. Phys. Biol. 8(4), 045007 (2011)CrossRefGoogle Scholar
  20. 20.
    Savill, N.J., Hogeweg, P.: Modelling morphogenesis: from single cells to crawling slugs. J. Theor. Biol. 184(3), 229–235 (1997)CrossRefGoogle Scholar
  21. 21.
    Starruss, J., Bley, T., Sogaard-Andersen, L., Deutsch, A.: A new mechanism for collective migration in Myxococcus xanthus. J. Stat. Phys. 128(1–2), 269–286 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Starruß, J., de Back, W., Brusch, L., Deutsch, A.: Morpheus: a user-friendly modeling environment for multiscale and multicellular systems biology. Bioinformatics 30(9), 1331–1332 (2014)CrossRefGoogle Scholar
  23. 23.
    Steinberg, M.S.: Reconstruction of tissues by dissociated cells. Science 141, 401–408 (1963)CrossRefGoogle Scholar
  24. 24.
    Swat, M.H., Thomas, G.L., Belmonte, J.M., Shirinifard, A., Hmeljak, D., Glazier, J.A.: Multi-scale modeling of tissues using CompuCell3d. In: Asthagiri, A.R., Arkin, A.P. (eds.) Computational Methods in Cell Biology. Methods in Cell Biology, pp. 325–366. Academic Press, Dublin (2012)CrossRefGoogle Scholar
  25. 25.
    Turner, S., Sherratt, J.A., Painter, K.J., Savill, N.J.: From a discrete to a continuous model of biological cell movement. Phys. Rev. E 69(2), 021910 (2004)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Voss-Böhme, A., Deutsch, A.: On the cellular basis of cell sorting kinetics. J. Theor. Biol. 263(4), 419–436 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Voss-Böhme, A.: Multi-scale modeling in morphogenesis: a critical analysis of the cellular Potts model. PLoS ONE 7(9), e42852 (2012)CrossRefGoogle Scholar
  28. 28.
    Weliky, M., Oster, G.: The mechanical basis of cell rearrangement. Development 109(2), 373–386 (1990)Google Scholar
  29. 29.
    Zajac, M., Jones, G.L., Glazier, J.A.: Simulating convergent extension by way of anisotropic differential adhesion. J. Theor. Biol. 222, 247–259 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Hochschule für Technik und Wirtschaft DresdenUniversity of Applied SciencesDresdenGermany
  2. 2.Zentrum für Informationsdienste und Hochleistungsrechnen, Technische Universität DresdenDresdenGermany

Personalised recommendations