Advertisement

Cellular Potts Model: Applications to Vasculogenesis and Angiogenesis

  • Sonja E. M. Boas
  • Yi Jiang
  • Roeland M. H. MerksEmail author
  • Sotiris A. Prokopiou
  • Elisabeth G. Rens
Chapter
Part of the Emergence, Complexity and Computation book series (ECC, volume 27)

Abstract

The cellular Potts model (CPM, a.k.a. Glazier–Graner–Hogeweg or GGH model) is a somewhat liberal extension of probabilistic cellular automata. The model is derived from the Ising and Potts models and represents biological cells as domains of CA-sites of the same state. A Hamiltonian energy is used to describe the balance of forces that the biological cells apply onto one another and their local environment. A Metropolis algorithm iteratively copies the state from one site into one of the adjacent sites, thus shifting the domain interfaces and moving the biological cells along the lattice. The approach is commonly used in applications of developmental biology, where the CPM often interacts with systems of ordinary-differential equations that model the intracellular chemical kinetics and partial-differential equations that model the extracellular chemical signal dynamics to constitute a hybrid and multiscale description of the biological system. In this chapter we will introduce the cellular Potts model and discuss its use in developmental biology, focusing on the development of blood vessels, a process called vascular morphogenesis. We will start by introducing a range of models focusing on uncovering the basic mechanisms of vascular morphogenesis: network formation and sprouting and then show how these models are extended with models of intracellular regulation and with interactions with the extracellular micro-environment. We then briefly review the integration of models of vascular morphogenesis in several examples of organ development in health and disease, including development, cancer, and age-related macular degeneration. We end by discussing the computational efficiency of the CPM and the available strategies for the validation of CPM-based simulation models.

Keywords

Cellular Potts model Multiscale modeling Angiogenesis Vasculogenesis Extracellular matrix Delta-Notch Mechanical signaling VEGF 

Notes

Acknowledgements

We thank Indiana University and the Biocomplexity Institute for providing the CompuCell3D modeling environment and SURFsara (www.surfsara.nl) for the support in using the Lisa Compute Cluster. The investigations were in part supported by the Division for Earth and Life Sciences (ALW) with financial aid from the Netherlands Organization for Scientific Research (NWO) through Vidi grant 864.10.009. YJ was supported partially by the National Institute of Health grant U01CA143069.

References

  1. 1.
    Alberi, L., Liu, S., Wang, Y., Badie, R., Smith-Hicks, C., Wu, J., Pierfelice, T.J., Abazyan, B., Mattson, M.P., Kuhl, D., Pletnikov, M., Worley, P.F., Gaiano, N.: Activity-induced notch signaling in neurons requires arc/arg3. 1 and is essential for synaptic plasticity in hippocampal networks. Neuron 69, 437–444 (2011)CrossRefGoogle Scholar
  2. 2.
    Anderson, A.R.A., Chaplain, M.A.J.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60(5), 857–899 (1998)Google Scholar
  3. 3.
    Anderson, A.R.A., Quaranta, V.: Integrative mathematical oncology. Nat. Rev. Cancer 8(3), 227–234 (2008)CrossRefGoogle Scholar
  4. 4.
    Bardin, A.J., Le Borgne, R., Schweisguth, F.: Asymmetric localization and function of cell-fate determinants: a fly’s view. Curr. Opin. Neurobiol. 14, 6–14 (2004)CrossRefGoogle Scholar
  5. 5.
    Bauer, A.L., Jackson, T.L., Jiang, Y.: A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J. 92, 3105–3121 (2007)CrossRefGoogle Scholar
  6. 6.
    Bauer, A.L., Jackson, T.L., Jiang, Y.: Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput. Biol. 5(7), e1000,445 (2009)Google Scholar
  7. 7.
    Bischofs, I.B., Schwarz, U.S.: Cell organization in soft media due to active mechanosensing. Proc. Natl. Acad. Sci. U.S.A. 100(16), 9274–9279 (2003)CrossRefGoogle Scholar
  8. 8.
    Blanco, R., Gerhardt, H.: VEGF and Notch in tip and stalk cell selection. Cold Spring Harbor Perspectives in Medicine 3 (2013)Google Scholar
  9. 9.
    Blum, Y., Belting, H.G., Ellertsdottir, E., Herwig, L., Lüders, F., Affolter, M.: Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev. Biol. 316(2), 312–322 (2008)CrossRefGoogle Scholar
  10. 10.
    Boas, S.E.M., Merks, R.M.H.: Synergy of cell-cell repulsion and vacuolation in a computational model of lumen formation. J. R. Soc. Interface 11(92), e20131049 (2014)Google Scholar
  11. 11.
    Boas, S.E.M., Merks, R.M.H.: Tip cell overtaking occurs as a side effect of sprouting in computational models of angiogenesis. BMC Syst. Biol. 9, 86 (2015)CrossRefGoogle Scholar
  12. 12.
    Boas, S.E.M., Navarro Jimenez, M.I., Merks, R.M.H., Blom, J.G.: A global sensitivity analysis approach for morphogenesis models. BMC Syst. Biol. 9, 85 (2015)CrossRefGoogle Scholar
  13. 13.
    Bray, S.: Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7, 678–689 (2011)CrossRefGoogle Scholar
  14. 14.
    Califano, J., Reinhart-King, C.: A balance of substrate mechanics and matrix chemistry regulates endothelial cell network assembly. Cell. Molec. Bioeng. 1(2), 122–132 (2008)CrossRefGoogle Scholar
  15. 15.
    Califano, J.P., Reinhart-King, C.A.: Exogenous and endogenous force regulation of endothelial cell behavior. J. Biomech. 43(1), 79–86 (2010)CrossRefGoogle Scholar
  16. 16.
    Cao, Y., Hong, A., Schulten, H., Post, M.J.: Update on therapeutic neovascularization. Cardiov. Res. 65, 639–648 (2005)Google Scholar
  17. 17.
    Carlier, A., Geris, L., Bentley, K., Carmeliet, G., Carmeliet, P., Van Oosterwyck, H.: MOSAIC: a multiscale model of osteogenesis and sprouting angiogenesis with lateral inhibition of endothelial cells. PLoS Comput. Biol. 8(10), e1002,724 (2012)Google Scholar
  18. 18.
    Carmeliet, P.: Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005)CrossRefGoogle Scholar
  19. 19.
    Carmeliet, P., Jain, R.K.: Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000)CrossRefGoogle Scholar
  20. 20.
    Checa, S., Rausch, M.K., Petersen, A., Kuhl, E., Duda, G.N.: The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization. Biomech. Model. Mechanobiol. (2014)Google Scholar
  21. 21.
    Collier, J.R., Monk, N.A., Maini, P.K., Lewis, J.H.: Pattern formation by lateral inhibition with feedback: a mathematical model of delta-notch intercellular signalling. J. Theor. Biol. 183, 429–446 (1996)CrossRefGoogle Scholar
  22. 22.
    Coultas, L., Chawengsaksophak, K., Rossant, J.: Endothelial cells and vegf in vascular development. Nature 438, 937–945 (2005)CrossRefGoogle Scholar
  23. 23.
    Daub, J.T., Merks, R.M.H.: A cell-based model of extracellular-matrix-guided endothelial cell migration during angiogenesis. Bull. Math. Biol. 75, 1377–1399 (2013)Google Scholar
  24. 24.
    Daub, J.T., Merks, R.M.H.: Cell-based computational modeling of vascular morphogenesis using tissue simulation toolkit. In: Ribatti, D. (ed.) Vascular Morphogenesis: Methods and Protocols, Methods in Molecular Biology, vol. 1214, pp. 67–127. Springer, New York, NY (2015)Google Scholar
  25. 25.
    Davis, G.E., Bayless, K.J.: An integrin and rho gtpase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices. Microcirculation 10(1), 27–44 (2003)CrossRefGoogle Scholar
  26. 26.
    Dequeant, M.L., Pourquie, O.: Segmental patterning of the vertebrate embryonic axis. Nat. Rev. Genet. 9, 370–382 (2008)CrossRefGoogle Scholar
  27. 27.
    Enderling, H., Hlatky, L., Hahnfeldt, P.: Migration rules: tumours are conglomerates of self-metastases. Br. J. Cancer 100(12), 1917–1925 (2009)CrossRefGoogle Scholar
  28. 28.
    Folkman, J.: Tumour angiogenesis: therapeutic implications. New Engl. J. Medic. 285, 1182–1186 (1971)CrossRefGoogle Scholar
  29. 29.
    Folkman, J.: Tumor angiogenesis: a possible control point in tumor growth. Ann. Intern. Med. 82, 96–100 (1975)CrossRefGoogle Scholar
  30. 30.
    Forrester, J.V., Chapman, A., Kerr, C., Roberts, J., Lee, W.R., Lackie, J.M.: Bovine retinal explants cultured in collagen gels. a model system for the study of proliferative retinopathy. Arch. Ophthalmol. 108, 415–420 (1990)CrossRefGoogle Scholar
  31. 31.
    Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D., Betsholtz, C.: VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003)CrossRefGoogle Scholar
  32. 32.
    Glazier, J.A., Balter, A., Popławski, N.J.: Magnetization to morphogenesis: a brief history of the Glazier-Graner-Hogeweg model. In: Anderson, A.R.A., Rejniak, K.A. (eds.) Single Cell-Based Models in Biology and Medicine, series Mathematics and Biosciences in Interaction, 3-28. Birkhaüser Verlag, Basel/Switzerland, pp. 79–106 (2007)Google Scholar
  33. 33.
    Glazier, J.A., Graner, F.: Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E 47(3), 2128–2154 (1993)CrossRefGoogle Scholar
  34. 34.
    Graner, F., Glazier, J.A.: Simulation of biological cell sorting using a two-dimensional extended potts model. Phys. Rev. Lett. 69, 2013–2016 (1992)Google Scholar
  35. 35.
    Harris, A.K., Wild, P.P., Stopak, D.D.: Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science (New York, NY) 208(4440), 177–179 (1980)CrossRefGoogle Scholar
  36. 36.
    Haston, W.S., Shields, J.M., Wilkinson, P.C.: The orientation of fibroblasts and neutrophils on elastic substrata. Exper. Cell Res. 146(1), 117–126 (1983)CrossRefGoogle Scholar
  37. 37.
    Hogeweg, P.: Cellular automata as a paradigm for ecological modeling. Appl. Math. Comput. 27, 81–100 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Holtfreter, J.: Experimental studies on the development of the pronephros. Rev. Can. Biol. 3, 220–250 (1994)Google Scholar
  39. 39.
    Jakobsson, L., Franco, C.A., Bentley, K., Collins, R.T., Ponsioen, B., Aspalter, I.M., Rosewell, I., Busse, M., Thurston, G., Medvinsky, A., Schulte-Merker, S., Gerhardt, H.: Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12(10), 943–953 (2010)CrossRefGoogle Scholar
  40. 40.
    Käfer, J., Hayashi, T., Marée, A.F.M., Carthew, R.W., Graner, F.: Cell adhesion and cortex contractility determine cell patterning in the Drosophila retina. P. Natl. Acad. Sci. USA 104(47), 18549–18554 (2007)CrossRefGoogle Scholar
  41. 41.
    Kamei, M., Saunders, W.B., Bayless, K.J., Dye, L., Davis, G.E., M., W.B.: Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 27(442), 453–456 (2006)Google Scholar
  42. 42.
    Kleinstreuer, N., Dix, D., Rountree, M., Baker, N., Sipes, N., Reif, D., Spencer, R., Knudsen, T.: A computational model predicting disruption of blood vessel development. PLoS Comput. Biol. 9(4), e1002,996 (2013)Google Scholar
  43. 43.
    Koch, A.E.: Angiogenesis as a target in rheumatoid arthritis. Ann. Rheum. Dis. 62(Suppl 2), 60–67 (2003)Google Scholar
  44. 44.
    Köhn-Luque, A., de Back, W., Starruss, J., Mattiotti, A., Deutsch, A.e.a.: Early embryonic vascular patterning by matrix-mediated paracrine signalling: A mathematical model study. PLoS One 6(9), e24,175 (2011)Google Scholar
  45. 45.
    Krieg, M., Arboleda-Estudillo, Y., Puech, P.H., Käfer, J., Graner, F., Müller, D.J., Heisenberg, C.P.: Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10, 429–436 (2008)Google Scholar
  46. 46.
    Lemmon, C.A., Romer, L.H.: A predictive model of cell traction forces based on cell geometry. Biophys. J. 99(9), L78–L80 (2010)CrossRefGoogle Scholar
  47. 47.
    Lieber, T., Kidd, S., Struhl, G.: DSL-notch signaling in the drosophila brain in response to olfactory stimulation. Neuron 69, 468–481 (2004)CrossRefGoogle Scholar
  48. 48.
    Lo, C., Wang, H., Dembo, M., Wang, Y.L.: Cell movement is guided by the rigidity of the substrate. Biophys 79(1), 144–152 (2000)Google Scholar
  49. 49.
    Lobov, I.B., Renard, R.A., Papadopoulos, N., Gale, N.W., Thurston, G., Yancopoulos, G.D., Wiegand, S.J.: Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. PNAS 104, 3219–3224 (2007)CrossRefGoogle Scholar
  50. 50.
    Lushnikov, P.M., Chen, N., Alber, M.: Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. Phys. Rev. E 78(6), 061,904 (2008)Google Scholar
  51. 51.
    Manoussaki, D., Lubkin, S.R., Vernon, R.B., Murray, J.D.: A mechanical model for the formation of vascular networks in vitro. Acta Biotheoretica 44(3–4), 271–282 (1996)CrossRefGoogle Scholar
  52. 52.
    Marée, A., Grieneisen, V., Hogeweg, P.: The cellular potts model and biophysical properties of cells, tissues and morphogenesis. In: Single Cell-Based Models in Biology and Medicine pp. 107–136 (2007)Google Scholar
  53. 53.
    Marée, A.F.M., Grieneisen, V.A., Edelstein-Keshet, L.: How cells integrate complex stimuli: The effect of feedback from phosphoinositides and cell shape on cell polarization and motility. PLoS Comput. Biol. 8(3), e1002,402 (2012)Google Scholar
  54. 54.
    Marée, A.F.M., Jilkine, A., Dawes, A., Grieneisen, V.A., Edelstein-Keshet, L.: Polarization and movement of keratocytes: a multiscale modelling approach. B. Math. Biol. 68(5), 1169–1211 (2006)CrossRefzbMATHGoogle Scholar
  55. 55.
    Martin, A., Komada, M.R., Sane, D.C.: Abnormal angiogenesis in diabetes mellitus. Med. Res. Rev. 23, 117–145 (2003)CrossRefGoogle Scholar
  56. 56.
    Merks, R.M.H., Brodsky, S., Goligorksy, M., Newman, S., Glazier, J.A.: Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Devel. Biol. 289, 44–54 (2006)CrossRefGoogle Scholar
  57. 57.
    Merks, R.M.H., Glazier, J.A.: A cell-centered approach to developmental biology. Physica A 352(1), 113–130 (2005)Google Scholar
  58. 58.
    Merks, R.M.H., Koolwijk, P.: Modeling morphogenesis in silico and in vitro: towards quantitative, predictive cell-based modeling. Math. Model. Nat. Pheno. 4(5), 149–171 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Merks, R.M.H., Perryn, E.D., Shirinifard, A., Glazier, J.A.: Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol 4(9), e1000,163 (2008)Google Scholar
  60. 60.
    Mitchell, C., Rutland, C., Walker, M., Nasir, M., Foss, A., Stewart, C., Gerhardt, H., Konerding, M., Risau, W., Drexler, H.: Unique vascular phenotypes following over-expression of individual VEGFA isoforms from the developing lens. Angiogenesis 9(4), 209–224 (2006)CrossRefGoogle Scholar
  61. 61.
    Ouchi, N.B., Glazier, J.A., Rieu, J.P., Upadhyaya, A., Sawada, Y.: Improving the realism of the cellular Potts model in simulations of biological cells. Phys. A Stat. Mech. Appl. 329(3–4), 451–458 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Palm, M.M., Dallinga, M.G., van Dijk, E., Klaassen, I., Schlingemann, R.O., Merks, R.M.H.: Computational screening of angiogenesis model variants predicts that differential chemotaxis helps tip cells move to the sprout tip and accelerates sprouting. PLoS ONE 11(11), e0159478 (2016)CrossRefGoogle Scholar
  63. 63.
    Palm, M.M., Merks, R.M.H.: Vascular networks due to dynamically arrested crystalline ordering of elongated cells. Phys. Rev. E 87, e012,725 (2013)Google Scholar
  64. 64.
    Palm, M.M., Merks, R.M.H.: Large-scale parameter studies of cell-based models of tissue morphogenesis using CompuCell 3D or Virtual Leaf. In: Tissue Morphogenesis. Methods in Molecular Biology, vol. 1189, pp. 301–322. Springer, New York (2014)Google Scholar
  65. 65.
    Peirce, S.M.: Computational and mathematical modeling of angiogenesis. Microcirculation 15(8), 739–751 (2008)CrossRefGoogle Scholar
  66. 66.
    Pelham, R.J., Wang, Y.L.: Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. U.S.A. 94(25), 13661–13665 (1997)CrossRefGoogle Scholar
  67. 67.
    Pitt-Francis, J., Pathmanathan, P., Bernabeu, M.O., Bordas, R., Cooper, J., Fletcher, A.G., Mirams, G.R., Murray, P., Osborne, J.M., Walter, A., Chapman, S.J., Garny, A., van Leeuwen, I.M.M., Maini, P.K., Rodriguez, B., Waters, S.L., Whiteley, J.P., Byrne, H.M., Gavaghan, D.J.: Chaste: A test-driven approach to software development for biological modelling. Comput. Phys. Commun. 180(12), 2452–2471 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Prokopiou, S.A.: Integrative modelling of angiogenesis in the bovine corpus luteum. Ph.D. thesis, University of Nottingham (2013)Google Scholar
  69. 69.
    Prokopiou, S.A., Owen, M.R., Byrne, H.M., Ziyad, S., Domigan, C., Iruela-Arispe, M.L., Jiang, Y.: Integrative modeling of sprout formation in angiogenesis: coupling the VEGFA-Notch signaling in a dynamic stalk-tip cell selection. ArXiv e-prints (2016)Google Scholar
  70. 70.
    Reinhart-King, C.A., Dembo, M., Hammer, D.A.: Cell-cell mechanical communication through compliant substrates. Biophys. J. 95(12), 6044–6051 (2008)CrossRefGoogle Scholar
  71. 71.
    Riveline, D.D., Zamir, E.E., Balaban, N.Q., Schwarz, U.S., Ishizaki, T.T., Narumiya, S.S., Kam, Z.Z., Geiger, B.B., Bershadsky, A.D.: Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153(6), 1175–1186 (2001)CrossRefGoogle Scholar
  72. 72.
    Roegiers, F., Jan, Y.N.: Asymmetric cell division. Curr. Opin. Cell Biol. 16, 195–205 (2004)CrossRefGoogle Scholar
  73. 73.
    Savill, N.J., Hogeweg, P.: Modelling morphogenesis: From single cells to crawling slugs. J. Theor. Biol. 184, 229–235 (1997)CrossRefGoogle Scholar
  74. 74.
    Scianna, M.: A multiscale hybrid model for pro-angiogenic calcium signals in a vascular endothelial cell. J. Math. Biol. 74(6), 1253–1291 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Scianna, M., Preziosi, L.: Modeling the influence of nucleus elasticity on cell invasion in fiber networks and microchannels. J. Theor. Biol. 317, 394–406 (2013)CrossRefGoogle Scholar
  76. 76.
    Scott, A., Powner, M.B., Gandhi, P., Clarkin, C., Gutmann, D.H.e.a.: Astrocyte-derived vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature. PLoS One 5(7), e11,863 (2010)Google Scholar
  77. 77.
    Segel, L.A.: Computing an organism. PNAS 98(7), 3639–3640 (2001)CrossRefGoogle Scholar
  78. 78.
    Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., Bussolino, F.: Modeling the early stages of vascular network assembly. EMBO J. 22(8), 1771–1779 (2003)CrossRefGoogle Scholar
  79. 79.
    Shirinifard, A., Gens, J.S., Zaitlen, B.L., Popławski, N.J., Swat, M., Glazier, J.A.: 3D multi-cell simulation of tumor growth and angiogenesis. PLoS ONE 4(10), e7190 (2009)CrossRefGoogle Scholar
  80. 80.
    Shirinifard, A., Glazier, J.A., Swat, M., Gens, J.S., Family, F., Jiang, Y., Grossniklaus, H.E.: Adhesion failures determine the pattern of choroidal neovascularization in the eye: a computer simulation study. PLoS Comput. Biol. 8(5), e1002,440 (2012)Google Scholar
  81. 81.
    Sozinova, O., Jiang, Y., Kaiser, D., Alber, M.: A three-dimensional model of myxobacterial fruiting-body formation. P. Natl. Acad. Sci. USA 103(46), 17255–17259 (2006)CrossRefGoogle Scholar
  82. 82.
    Starruß, J., Bley, T., Søgaard-Andersen, L., Deutsch, A.: A new mechanism for collective migration in myxococcus xanthus. J. Stat. Phys. 128(1–2), 269–286 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    Starruß, J., De Back, W., Brusch, L., Deutsch, A.: Morpheus: a user-friendly modeling environment for multiscale and multicellular systems biology. Bioinformatics (2014)Google Scholar
  84. 84.
    Steinberg, M.S.: Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science 141, 401–408 (1963)CrossRefGoogle Scholar
  85. 85.
    Strilić, B., Eglinger, J., Krieg, M., Zeeb, M., Axnick, J., Babál, P., Müller, D.J., Lammert, E.: Electrostatic cell-surface repulsion initiates lumen formation in developing blood vessels. Curr. Biol. 20(22), 2003–2009 (2010)Google Scholar
  86. 86.
    Swat, M.H., Thomas, G.L., Belmonte, J.M., Shirinifard, A., Hmeljak, D., Glazier, J.A.: Multi-Scale Modeling of Tissues Using CompuCell3D, vol. 110. Elsevier Inc. (2012)Google Scholar
  87. 87.
    Szabó, A., Czirók, A.: The role of cell-cell adhesion in the formation of multicellular sprouts. Math. Model Nat. Phenom. 5(1), 106–122 (2010)Google Scholar
  88. 88.
    Szabó, A., Erica, D.P., Czirók, A.: Network formation of tissue cells via preferential attraction to elongated structures. Phys. Rev. Lett. 98(3), 038,102 (2007)Google Scholar
  89. 89.
    Szabó, A., Mehes, E., Kosa, E., Czirók, A.: Multicellular sprouting in vitro. Biophys. J. 95(6), 2702–2710 (2008)CrossRefGoogle Scholar
  90. 90.
    Tapia, J.J., D’souza, R.M.: Parallelizing the cellular potts model on graphics processing units. Comput. Phys. Commun. 182(4), 857–865 (2011)Google Scholar
  91. 91.
    Turner, S., Sherratt, J.A.: Intercellular adhesion and cancer invasion: a discrete simulation using the extended potts model. J. Theor. Biol. 216, 85–100 (2002)MathSciNetCrossRefGoogle Scholar
  92. 92.
    Vernon, R.B., Sage, E.H.: Between molecules and morphology. Extracellular matrix and creation of vascular form. Am. J. Pathol. 147(4), 873–883 (1995)Google Scholar
  93. 93.
    van Oers, R.F.M., Rens, E.G., LaValley, D.J., Reinhart-King, C.A., Merks, R.M.H.: Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro. PLoS Comput Biol 10(8), e1003,774 (2014)Google Scholar
  94. 94.
    Voss-Böhme, A.: Multi-scale modeling in morphogenesis: a critical analysis of the cellular potts model. PLoS ONE 7(9), e42, 852 (2012)Google Scholar
  95. 95.
    Vroomans, R.M.A., Marée, A.F.M., de Boer, R.J., Beltman, J.B.: Chemotactic migration of T cells towards dendritic cells promotes the detection of rare antigens. PLoS Comput. Biol. 8(11), e1002,763 (2012)Google Scholar
  96. 96.
    Wang, Y., Kaiser, M.S., Larson, J.D., Nasevicius, A., Clark, K.J., Wadman, S.A., Roberg-Perez, S.E., Ekker, S.C., Hackett, P.B., McGrail, M., Essner, J.J.: Moesin1 and VE-cadherin are required in endothelial cells during in vivo tubulogenesis. Development 137, 3119–3128 (2010)Google Scholar
  97. 97.
    Winer, J.P., Oake, S., Janmey, P.A.: Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation. PLoS ONE 4(7), e6382 (2009)CrossRefGoogle Scholar
  98. 98.
    Yu, C., Yang, B.: Parallelizing the cellular potts model on gpu and multi-core cpu: An opencl cross-platform study. In: 2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp. 117–122 (2014)Google Scholar
  99. 99.
    Zajac, M., Jones, G., Glazier, J.: Simulating convergent extension by way of anisotropic differential adhesion. J. Theor. Biol. 222(2), 247–259 (2003)Google Scholar
  100. 100.
    Zajac, M., Jones, G.L., Glazier, J.A.: Model of convergent extension in animal morphogenesis. Phys. Rev. Lett. 85, 2022–2025 (2000)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sonja E. M. Boas
    • 1
    • 2
  • Yi Jiang
    • 4
  • Roeland M. H. Merks
    • 1
    • 2
    Email author
  • Sotiris A. Prokopiou
    • 3
  • Elisabeth G. Rens
    • 1
    • 2
  1. 1.Centrum Wiskunde & InformaticaAmsterdamThe Netherlands
  2. 2.Leiden University, Mathematical InstituteLeidenThe Netherlands
  3. 3.Department of Integrated Mathematical OncologyH. Lee Moffitt Cancer Center and Research InstituteTampaUSA
  4. 4.Department of Mathematics and StatisticsGeorgia State UniversityAtlantaUSA

Personalised recommendations