Skip to main content

PCA Modelling of Multi-species Cell Clusters: Ganglion Development in the Gastrointestinal Nervous System

  • Chapter
  • First Online:
Book cover Probabilistic Cellular Automata

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 27))

  • 1658 Accesses

Abstract

A defining characteristic of the enteric nervous system (ENS) is mesoscale patterned entities called ganglia. Ganglia are clusters of neurons with associated enteric neural crest (ENC) cells, which form in the simultaneously growing gut wall. At first, the precursor ENC cells proliferate and gradually differentiate to produce the enteric neurons; these neurons form clusters with ENC scattered around and later lying on the periphery of neuronal clusters. By immunolabelling neural cell–cell adhesion molecules, the adhesive capacity of neurons is determined to be greater than that of ENC cells. Using a probabilistic cellular automata (PCA) model, we test the hypothesis that local rules governing differential adhesion of neuronal agents and ENC agents will produce clusters that emulate ganglia. The clusters are relatively stable, relatively uniform and small in size, of fairly uniform spacing, with a balance between the number of neuronal and ENC agents. These features are attained in both fixed and growing domains, reproducing, respectively, organotypic in vitro and in vivo observations. Various threshold criteria governing ENC agent proliferation and differentiation and neuronal agent inhibition of differentiation are important for sustaining these characteristics. This investigation suggests possible explanations for observations in normal and abnormal ENS development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Binder, B.J., Landman, K.A.: Exclusion processes on a growing domain. J. Theor. Biol. 259, 541–551 (2009)

    Article  MathSciNet  Google Scholar 

  2. Binder, B.J., Landman, K.A., Simpson, M.J., Mariani, M., Newgreen, D.F.: Modeling proliferative tissue growth: a general approach and an avian case study. Phys. Rev. E 78, 031912 (2008)

    Article  Google Scholar 

  3. Breau, M.A., Pietri, T., Eder, O., Blanche, M., Brakebusch, C., Fassler, R., Thiery, J.P., Dufour, S.: Lack of \(\beta \)1 integrins in enteric neural crest cells leads to a Hirschsprung-like phenotype. Development 33, 1725–1734 (2006)

    Article  Google Scholar 

  4. Chalazonitis, A., Gershon, M.D., Green, L.A.: Cell death and the developing enteric nervous system. Neurochem. Int. 61, 839–847 (2012)

    Article  Google Scholar 

  5. Daub, J.T., Merks, R.M.H.: A cell-based model of extracellular-matrix-guided endothelial cell migration during angiogenesis. Bull. Math. Biol. 75, 1377–1399 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Foty, R.A., Steinberg, M.S.: Cadherin-mediated cell-cell adhesion and tissue segregation in relation to malignancy. Int. J. Dev. Biol. 48, 397–409 (2004)

    Article  Google Scholar 

  7. Foty, R.A., Steinberg, M.S.: The differential adhesion hypothesis: a direct evaluation. Dev. Biol. 278, 255–263 (2005)

    Article  Google Scholar 

  8. Glazier, J.A., Graner, F.: Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E 47, 2128–2154 (1993)

    Article  Google Scholar 

  9. Graner, F., Glazier, J.A.: Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69, 2013–2016 (1992)

    Article  Google Scholar 

  10. Hackett-Jones, E.J., Landman, K.A., Newgreen, D.F., Zhang, D.: On the role of differential adhesion in gangliogenesis in the enteric nervous system. J. Theor. Biol. 287, 148–159 (2011)

    Article  Google Scholar 

  11. Hao, M.M., Anderson, R.B., Kobayashi, K., Whitington, P.M., Young, H.M.: The migratory behaviour of immature enteric neurons. Dev. Neurobiol. 69, 22–35 (2009)

    Google Scholar 

  12. Hao, M.M., Anderson, R.B., Young, H.M.: Development of enteric neuron diversity. J. Cell. Mol. Med. 13, 1193–1210 (2009)

    Article  Google Scholar 

  13. Hearn, C.J., Young, H.M., Ciampoli, D., Lomax, A.E., Newgreen, D.F.: Catenary cultures of embryonic gastrointestinal tract support organ morphogenesis, motility, neural crest cell migration, and cell differentiation. Dev. Dyn. 214, 239–247 (1999)

    Article  Google Scholar 

  14. Hendershot, T.J., Liu, H., Sarkar, A.A., Giovannucci, D.R., Clouthier, D.E., Abe, M., Howard, M.J.: Expression of Hand2 is sufficient for neurogenesis and cell type-specific gene expression in the enteric nervous system. Dev. Dyn. 236, 93–105 (2007)

    Article  Google Scholar 

  15. Horton, J.D.: A polynomial-time algorithm to find a shortest cycle basis of a graph. SIAM J. Comput. 16, 359–366 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hoshen, J., Kopelman, R.: Percolation and cluster distribution. I. Cluster multiple labeling technique and critical density algorithm. Phys. Rev. B 14, 3438–3445 (1976)

    Article  Google Scholar 

  17. Hotta, R., Anderson, R.B., Kobayashi, K., Newgreen, D.F., Young, H.M.: Effects of tissue age, presence of neurones and endothelin-3 on the ability of enteric neurone precursors to colonize recipient gut: implications for cell-based therapies. Neurogastroenterol. Motil. 22, 331–e86 (2010)

    Article  Google Scholar 

  18. Landman, K.A., Fernando, A.E., Zhang, D., Newgreen, D.F.: Building stable chains with motile agents: Insights into the morphology of enteric neural crest cell migration. J. Theor. Biol. 276, 250–268 (2011)

    Article  Google Scholar 

  19. Landman, K.A., Binder, B.J., Newgreen, D.F.: Modeling development and disease in our “second” brain. Lect. Notes Comput. Sci. 7495, 405 (2012)

    Article  Google Scholar 

  20. Longo, D., Peirce, S.M., Skalak, T.C., Davidson, L., Marsden, M., Dzamba, B., DeSimone, D.W.: Multicellular computer simulation of morphogenisis: blastocoel roof thinning and matrix assembly in Xenopus laevis. Dev. Biol. 271, 210–222 (2004)

    Article  Google Scholar 

  21. Mehlhorn, K., Michail, D.: Implementing minimum cycle basis algorithms. J. Exp. Algorithmics 11, 1–14 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Meier-Ruge, W.A., Bruder, E., Kapur, R.P.: Intestinal neuronal dysplasia type B: one giant ganglion is not good enough. Pediatr. Dev. Pathol. 9, 444–452 (2006)

    Article  Google Scholar 

  23. Merks, R.M.H., Glazier, J.A.: A cell-centered approach to developmental biology. Physica A 352, 113–130 (2005)

    Article  Google Scholar 

  24. Newgreen, D.F., Southwell, B., Hartley, L., Allan, I.J.: Migration of enteric neural crest cells in relation to growth of the gut in avian embryos. Acta Anat. 157, 105–115 (1996)

    Article  Google Scholar 

  25. Newgreen, D., Young, H.M.: Enteric nervous system: development and developmental disturbances-part 1. Pediatr. Dev. Pathol. 5, 224–247 (2002)

    Google Scholar 

  26. Peirce, S.M., Van Gieson, E.J., Skalak, T.C.: Multicellular simulation predicts microvascular patterning and in silico tissue assembly. FASEB J. 18(6), 731–733 (2004). https://doi.org/10.1096/fj.03-0933fje

  27. Savill, N.J., Sherratt, J.A.: Control of epidermal stem cell clusters by notch-mediated lateral induction. Dev. Biol. 258, 141–153 (2003)

    Article  Google Scholar 

  28. Simpson, M.J., Merrifield, A., Landman, K.A., Hughes, B.D.: Simulating invasion with cellular automata. Phys. Rev. E 76, 021918 (2007)

    Article  Google Scholar 

  29. Simpson, M.J., Zhang, D.C., Mariani, M., Landman, K.A., Newgreen, D.F.: Cell proliferation drives neural crest cell invasion of the intestine. Dev. Biol. 302, 553–568 (2007)

    Article  Google Scholar 

  30. Steinberg, M.S.: Mechanism of tissue reconstruction by dissociated cells.II. Time course of events. Science 137, 762–763 (1962)

    Google Scholar 

  31. Steinberg, M.S.: On the mechanism of tissue reconstruction by dissociated cells, III. Free energy relations and the reorganisation of fused, heteronomic tissue fragments. Proc. Natl. Acad. Sci. USA 48, 1769–1776 (1962)

    Google Scholar 

  32. Steinberg, M.S.: On the mechanism of tissue reconstruction by dissociated cells, I. population kinetics, differential adhesiveness, and the absence of directed migration. Proc. Natl. Acad. Sci. USA 48, 1577–1582 (1962)

    Google Scholar 

  33. Sulsky, D.: A model of cell sorting. J. Theor. Biol. 106, 275–301 (1984)

    Article  Google Scholar 

  34. Townes, P.L., Holtfreter, J.: Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128, 53–120 (1955)

    Article  Google Scholar 

  35. Wedel, T., Roblick, U.J., Ott, V., Eggers, R., Schiedeck, T.H.K., Krammer, H.J., Bruch, H.P.: Oligoneuronal hypoganglionosis in patients with idiopathic slow-transit constipation. Dis. Colon Rectum 45, 54–62 (2002)

    Article  Google Scholar 

  36. Wilson, H.V.: On some phenomena of coalescence and regeneration in sponges. J. Exp. Zool. 5, 245–258 (1907)

    Article  Google Scholar 

  37. Yin, M., King, S.K., Hutson, J.M., Chow, C.W.: Multiple endocrine neoplasia type 2B diagnosed on suction rectal biopsy in infancy: a report of 2 cases. Pediatr. Dev. Pathol. 9, 56–60 (2006)

    Article  Google Scholar 

  38. Young, H.M., Bergner, A.J., Muller, T.: Acquisition of neuronal and glial markers by neural crest-derived cells in the mouse intestine. J. Comp. Neurol. 456, 1–11 (2003)

    Article  Google Scholar 

  39. Young, H.M., Bergner, A.J., Anderson, R.B., Enomoto, H., Milbrandt, J., Newgreen, D.F., Whitington, P.M.: Dynamics of neural crest-derived cell migration in the embryonic mouse gut. Dev. Biol. 270, 455–473 (2004)

    Article  Google Scholar 

  40. Young, H.M., Turner, K.N., Bergner, A.J.: The location and phenotype of proliferating neural-crest-derived cells in the developing mouse gut. Cell Tissue Res. 320, 1–9 (2005)

    Article  Google Scholar 

  41. Zhang, D., Brinas, I.M., Binder, B.J., Landman, K.A., Newgreen, D.F.: Neural crest regionalisation for enteric nervous system formation: implications for Hirschsprung’s Disease and stem cell therapy. Dev. Biol. 339, 280–294 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Australian Research Council and National Health and Medical Research Council grants. Thanks are given to Emily Hackett-Jones and Dongcheng Zhang. MCRI facilities are supported by the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerry A. Landman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Landman, K.A., Newgreen, D.F. (2018). PCA Modelling of Multi-species Cell Clusters: Ganglion Development in the Gastrointestinal Nervous System. In: Louis, PY., Nardi, F. (eds) Probabilistic Cellular Automata. Emergence, Complexity and Computation, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-65558-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65558-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65556-7

  • Online ISBN: 978-3-319-65558-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics