Phase Transitions of Cellular Automata

  • Franco BagnoliEmail author
  • Raúl Rechtman
Part of the Emergence, Complexity and Computation book series (ECC, volume 27)


We explore some aspects of phase transitions in cellular automata. We start recalling the standard formulation of the Monte Carlo approach for a discrete system. We then formulate the cellular automaton problem using simple models and illustrate different types of possible phase transitions: density phase transitions of first and second order, damage spreading, dilution of deterministic rules, asynchronism-induced transitions, synchronization phenomena, chaotic phase transitions and the influence of the topology.



This work was partially supported by EU projects 288021 (EINS – Network of Excellence in Internet Science) and project PAPIIT-DGAPA-UNAM IN109213.


  1. 1.
    Bagnoli, F.: Boolean derivatives and computation of cellular automata. Int. J. Mod. Phys. C 3, 307–320 (1992). MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bagnoli, F.: On damage spreading transitions. J. Stat. Mech. 85, 151–164 (1996). MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bagnoli, F., Cecconi, F.: Synchronization of non-chaotic dynamical systems. Phys. Lett. A 282, 9–17 (2001). MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bagnoli, F., Rechtman, R.: Synchronization and maximum Lyapunov exponents of cellular automata. Phys. Rev. E 59, R107–R1310 (1999). CrossRefzbMATHGoogle Scholar
  5. 5.
    Bagnoli, F., Rechtman, R.: Synchronization universality classes and stability of smooth coupled map lattices. Phys. Rev. E 73, 026202 (2006). CrossRefGoogle Scholar
  6. 6.
    Bagnoli, F., Rechtman, R.: Topological bifurcations in a model society of reasonable contrarians. Phys. Rev. E 88, 062914 (2013).
  7. 7.
    Bagnoli, F., Baroni, L., Palmerini, P.: Synchronization and directed percolation in coupled map lattices. Phys. Rev. E. 59, 409–416 (1999). CrossRefGoogle Scholar
  8. 8.
    Bagnoli, F., Boccara, N., Rechtman, R.: Nature of phase transitions in a probabilistic cellular automaton with two absorbing states. Phys. Rev. E 63, 046116 (2001). CrossRefGoogle Scholar
  9. 9.
    Derrida, B.: Dynamical phase transitions in spin models and automata. In: Van Beijeren, H. (ed.) Fundamental Problems in Statistical Mechanics VII, pp. 273–309. Elsevier Science Publisher, Amsterdam (1990)Google Scholar
  10. 10.
    Domany, E., Kinzel, W.: Equivalence of cellular automata to Ising models and directed percolation. Phys. Rev. Lett. 53, 311–314 (1984). 53.311 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fatès, N.: Asynchronism induces second order phase transitions in elementary cellular automata. J. Cell. Autom. 4, 21–38 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Fatès, N.: A guided tour of asynchronous cellular automata. J. Cell. Autom. 9, 387–416 (2014)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Fukś, H., Fatès, N.: Local structure approximation as a predictor of second order phase transitions in asynchronous cellular automata. Nat. Comput. 14(4), 507–522 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Grassberger, P.: On phase transitions in Schlögl’s second model. Z. Phys. B 47, 365 (1982)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Grassberger, P.: Synchronization of coupled systems with spatiotemporal chaos. Phys. Rev. E 59, R2520–R2524 (1999). CrossRefGoogle Scholar
  16. 16.
    Gutowitz, H.A., Victor, J.D., Knight, B.K.: Local structure theory for cellular automata. Physica 28D, 18–48 (1987)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Henkel, M., Hinrichsen, H., Lübeck, S.: Non-Equilibrium Phase Transitions Volume 1: Absorbing Phase Transitions. Springer Science, Dordrecht (2008)Google Scholar
  18. 18.
    Hinrichsen, H., Weitz, J.S., Domany, E.: An algorithm-independent definition of damage spreading, application to directed percolation. J. Stat. Phys. 88, 617–636 (1997)CrossRefzbMATHGoogle Scholar
  19. 19.
    Huang, K.: Statistical Mechanics. Wiley, New York (1963)Google Scholar
  20. 20.
    Kardar, G.P.M., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)CrossRefzbMATHGoogle Scholar
  21. 21.
    Janssen, H.K.: On the nonequilibrium phase transition in reaction-diffusion system with an absorbing stationary state. Z. Phys. B 42, 151 (1981)CrossRefGoogle Scholar
  22. 22.
    Kinzel, W.: Directed percolation. In: Adler, J., Zallen, R. Deutscher, G. (eds.) Percolation Structures and Processes. Annals of the Israel Physical Society, vol. 5, p. 425 (AIP, New York, 1983)Google Scholar
  23. 23.
    Kinzel, W.: Phase transition of cellular automata. Z. Phys. B 58, 229–244 (1985).
  24. 24.
    Muñoz, M.A., Hwa, T.: On nonlinear diffusion with multiplicative noise. Europhys. Lett. 41, 147–152 (1998)CrossRefGoogle Scholar
  25. 25.
    Tu, Y., Grinstein, G., Muñoz, M.A.: Systems with multiplicative noise: critical behavior from KPZ equation and numerics. Phys. Rev. Lett. 78, 274–277 (1997)CrossRefGoogle Scholar
  26. 26.
    Tomé, T., de Oliveira, M.J.: Renormalization group of the Domany-Kinzel cellular automaton. Phys. Rev. E 55, 4000–4004 (1997). CrossRefGoogle Scholar
  27. 27.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998). CrossRefzbMATHGoogle Scholar
  28. 28.
    Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601–644 (1983). 55.601 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Physics and Astronomy and CSDCUniversity of FlorenceFlorenceItaly
  2. 2.INFN, sez. FirenzeSesto FiorentinoItaly
  3. 3.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico

Personalised recommendations