Advertisement

Percolation Operators and Related Models

  • Piotr SłowińskiEmail author
Chapter
Part of the Emergence, Complexity and Computation book series (ECC, volume 27)

Abstract

Here we review the theory and methods of the two basic stochastic models with absorbing states: percolation operators and contact processes. We explore connections between them by studying discrete-time approximations of a continuous-time contact processes. In particular, we look at the approximations based on both synchronous and asynchronous updating schemes. Additionally, we go on to discuss several individual-based models, which are commonly used to model different biological phenomena. Specifically, we focused on models with absorbing states that, have spatially non-homogenous stationary states, or that have shown to be bi-stable. More generally, we aim to demonstrate the challenges associated with reconciling different mathematical descriptions of natural phenomena.

Notes

Acknowledgements

I am grateful to Prof Robert MacKay for introduction to the fascinating world of probabilistic cellular automata and for showing me different techniques for analysing them. I am also grateful to the editors and the reviewers for their many insightful comments, which greatly improved this chapter. Finally, I would like to thank the organisers of the workshop on “Probabilistic Cellular Automata: Theory, Applications and Future Perspectives”, June 2013, Eindhoven, for the opportunity to meet and learn from the experts of the field of PCAs. The research of the author has been funded by The Alfred P. Sloan Foundation, New York.

References

  1. 1.
    Antal, T., Droz, M.: Phase transitions and oscillations in a lattice prey-predator model. Phys. Rev. E 63, 056119 (2001)CrossRefGoogle Scholar
  2. 2.
    Arashiro, E., Tome, T.: The threshold of coexistence and critical behaviour of a predator-prey cellular automaton. J. Phys. A: Math. Theor. 40, 887–900 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bailey, R.M.: Spatial and temporal signatures of fragility and threshold proximity in modelled semi-arid vegetation. Proc. R. Soc. B 278, 1064–1071 (2011)CrossRefGoogle Scholar
  4. 4.
    Balister, P., Bollobas, B., Kozma, B.: Large deviations for mean field models of probabilistic cellular automata. Random Struct. Algorithms 29, 399–415 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    de Carvalho, K.C., Tome, T.: Probabilistic cellular automata describing a biological two-specimen system. Modern Phys. Lett. B 18(17), 873–880 (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    de Carvalho, K.C., Tome, T.: Anisotropic probabilistic cellular automaton for a predator-prey system brazilian. J. Phys. 37(2A), 466–470 (2007)Google Scholar
  7. 7.
    de Oliveira, M.M., Dickman, R.: How to simulate the quasi-stationary state. Phys. Rev. E 71, 016129 (2005)CrossRefGoogle Scholar
  8. 8.
    de Santana, L.H., Ramos, A.D., Toom, A.L.: Eroders on a plane with three states at a point. Part I: Deterministic. J. Stat. Phys. 159(5), 1175–1195 (2015).  https://doi.org/10.1007/s10955-015-1226-9 MathSciNetzbMATHGoogle Scholar
  9. 9.
    Diakonova, M., MacKay, R.S.: Mathematical examples of space-time phases. Int. J. Bifurc. Chaos 21, 2297–2304 (2011)CrossRefGoogle Scholar
  10. 10.
    Drossel, B., Schwabl, F.: Forest-fire model with immune trees. Phys. A 199(2), 183–197 (1993)CrossRefGoogle Scholar
  11. 11.
    Durrett, R.: Stochastic growth models: bounds on criticality. J. Appl. Probab. 29, 11–20 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Durrett, R.: Stochastic spatial models. SIAM Rev. 41(4), 677–718 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Durrett, R., Levin, S.A.: Stochastic spatial models: a user’s guide to ecological applications. Philos. Trans. R. Soc. Lond. B 343, 329–350 (1994)CrossRefGoogle Scholar
  14. 14.
    Durrett, R., Neuhauser, C.: Epidemics with recovery in d \(=\) 2. Ann. Appl. Probab. 1, 189–206 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Durrett, R., Swindle, G.: Are there bushes in a forest? Stoch. Process Appl. 37, 19–31 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Durrett, R., Schonmann, R.H., Tanaka, N.I.: The contact process on a finite set. III: the critical case. Ann. Probab. 17(4), 1303–1321 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Enss, T., Henkel, M., Picone, A., Schollwock, U.: Ageing phenomena without detailed balance: the contact process. J. Phys. A: Math. Gen. 37, 10479 (2004)Google Scholar
  18. 18.
    Fallert, S.V., Ludlam, J.J., Taraskin, S.N.: Simulating the contact process in heterogeneous environments. Phys. Rev. E 77, 051125 (2008)CrossRefGoogle Scholar
  19. 19.
    Fatès, N.: Guided tour of asynchronous cellular automata. J. Cell. Autom. 9(5–6), 387–416 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Grassberger, P., de la Torre, A.: Reggeon field theory (Schlogl’s First Model) on a lattice: Monte Carlo calculations of critical behaviour. Ann. Phys. 122, 373–396 (1979)CrossRefGoogle Scholar
  21. 21.
    Guichard, F., Halpin, P.M., Allison, G.W., Lubchenco, J., Menge, B.A.: Mussel disturbance dynamics: signatures of oceanographic forcing from local interactions. Am. Nat. 161(6), 889–904 (2003)CrossRefGoogle Scholar
  22. 22.
    Harris, T.E.: Contact Interactions on a lattice. Ann. Probab. 2(6), 969–988 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hinrichsen, H.: Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 49(7), 815–958 (2000)CrossRefGoogle Scholar
  24. 24.
    Kefi, S., Rietkerk, M., Alados, C.L., Pueyo, Y., Papanastasis, V.P., ElAich, A., de Ruiter, P.C.: Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449, 213–217 (2007)CrossRefGoogle Scholar
  25. 25.
    Kefi, S., Rietkerk, M., van Baalen, M., Loreau, M.: Local facilitation, bistability and transitions in arid ecosystems. Theor. Popul. Biol. 71(3), 367–379 (2007)CrossRefzbMATHGoogle Scholar
  26. 26.
    Kinzel, W., Yeomans, J.M.: Directed percolation: a finite-size renormalisation group approach. J. Phys. A: Math. Gen. 14, L163–L168 (1981)CrossRefGoogle Scholar
  27. 27.
    Liggett, T.M.: Classics in Mathematics: Interacting Particle Systems. Springer, Berlin (2005)CrossRefGoogle Scholar
  28. 28.
    Liggett, T.M.: T.E. Harris’ contributions to interacting particle systems and percolation. Ann. Probab. 39(2), 407–416 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Maes, Ch., Shlosman, S.B.: When is an interacting particle system ergodic? Commun. Math. Phys. 151(3), 447–466 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Makowiec, D., Gnacinski, P.: Universality class of probabilistic cellular automata. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) Cellular Automata. LNCS, vol. 2493, pp. 104–113. Springer, Berlin (2002)Google Scholar
  31. 31.
    Mendonza, J.R.G.: Monte Carlo investigation of the critical behavior of Stavskaya’s probabilistic cellular automaton. Phys. Rev. E 83, 012102 (2011)CrossRefGoogle Scholar
  32. 32.
    Peltomaki, M., Rost, M., Alava, M.: Characterizing spatiotemporal patterns in three-state lattice models. J. Stat. Mech. P02042 (2009)Google Scholar
  33. 33.
    Schonmann, R.H., Shlosman, S.B.: Wulff droplets and the metastable relaxation of kinetic ising models. Commun. Math. Phys. 194(2), 389–462 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Stavskaya, O., Piatetski-Shapiro, I.I.: On homogeneous nets of spontaneously active elements. Syst. Theory Res. 20, 75–88 (1971) (Originally published in Russian in 1969)Google Scholar
  35. 35.
    Stroock, D.W.: An Introduction to Markov Processes. Graduate Texts in Mathematics, vol. 230. Springer, Berlin (2005)Google Scholar
  36. 36.
    Taggi, L.: Critical probabilities and convergence time of Stavskaya’s Probabilistic Cellular Automata. J. Stat. Phys. 159(4), 853–892 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Toom, A.L.: Cellular automata with errors: problems for students of probability. In: Snell L. (ed) Topics in Contemporary Probability and Its Applications, Probability and Stochastic Series. CRC Press, Boca Raton (1995)Google Scholar
  38. 38.
    Toom, A.L.: Contours, Convex Sets, and Cellular Automata - Course notes from the 23th Colloquium of Brazilian. Mathematics. UFPE Department of Statistics, Recife (2004)Google Scholar
  39. 39.
    Toom, A.L., Vasilyev, N.B., Stavskaya, O.N., Mityushin, L.G., Kurdyumov, G.L., Pirogov, S.A.: Discrete local Markov systems. In: Dobrushin, R.L., Kryukov, V.I., Toom, A.L. (eds.) Stochastic Cellular Systems, Ergodicity, Memory and Morphogenesis, pp. 1–182. Manchester University Press, Manchester (1990)Google Scholar
  40. 40.
    Vazquez, F., Lopez, C., Calabrese, J.M., Munoz, M.A.: Dynamical phase coexistence: a simple solution to the “savanna problem”. J. Theor. Biol. 264, 360–366 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.College of Engineering, Mathematics and Physical Sciences, Harrison Building, Streatham CampusUniversity of ExeterExeterUK

Personalised recommendations