Skip to main content

Percolation Operators and Related Models

  • Chapter
  • First Online:
Probabilistic Cellular Automata

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 27))

  • 1653 Accesses

Abstract

Here we review the theory and methods of the two basic stochastic models with absorbing states: percolation operators and contact processes. We explore connections between them by studying discrete-time approximations of a continuous-time contact processes. In particular, we look at the approximations based on both synchronous and asynchronous updating schemes. Additionally, we go on to discuss several individual-based models, which are commonly used to model different biological phenomena. Specifically, we focused on models with absorbing states that, have spatially non-homogenous stationary states, or that have shown to be bi-stable. More generally, we aim to demonstrate the challenges associated with reconciling different mathematical descriptions of natural phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Antal, T., Droz, M.: Phase transitions and oscillations in a lattice prey-predator model. Phys. Rev. E 63, 056119 (2001)

    Article  Google Scholar 

  2. Arashiro, E., Tome, T.: The threshold of coexistence and critical behaviour of a predator-prey cellular automaton. J. Phys. A: Math. Theor. 40, 887–900 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bailey, R.M.: Spatial and temporal signatures of fragility and threshold proximity in modelled semi-arid vegetation. Proc. R. Soc. B 278, 1064–1071 (2011)

    Article  Google Scholar 

  4. Balister, P., Bollobas, B., Kozma, B.: Large deviations for mean field models of probabilistic cellular automata. Random Struct. Algorithms 29, 399–415 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. de Carvalho, K.C., Tome, T.: Probabilistic cellular automata describing a biological two-specimen system. Modern Phys. Lett. B 18(17), 873–880 (2004)

    Article  MATH  Google Scholar 

  6. de Carvalho, K.C., Tome, T.: Anisotropic probabilistic cellular automaton for a predator-prey system brazilian. J. Phys. 37(2A), 466–470 (2007)

    Google Scholar 

  7. de Oliveira, M.M., Dickman, R.: How to simulate the quasi-stationary state. Phys. Rev. E 71, 016129 (2005)

    Article  Google Scholar 

  8. de Santana, L.H., Ramos, A.D., Toom, A.L.: Eroders on a plane with three states at a point. Part I: Deterministic. J. Stat. Phys. 159(5), 1175–1195 (2015). https://doi.org/10.1007/s10955-015-1226-9

    MathSciNet  MATH  Google Scholar 

  9. Diakonova, M., MacKay, R.S.: Mathematical examples of space-time phases. Int. J. Bifurc. Chaos 21, 2297–2304 (2011)

    Article  Google Scholar 

  10. Drossel, B., Schwabl, F.: Forest-fire model with immune trees. Phys. A 199(2), 183–197 (1993)

    Article  Google Scholar 

  11. Durrett, R.: Stochastic growth models: bounds on criticality. J. Appl. Probab. 29, 11–20 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Durrett, R.: Stochastic spatial models. SIAM Rev. 41(4), 677–718 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Durrett, R., Levin, S.A.: Stochastic spatial models: a user’s guide to ecological applications. Philos. Trans. R. Soc. Lond. B 343, 329–350 (1994)

    Article  Google Scholar 

  14. Durrett, R., Neuhauser, C.: Epidemics with recovery in d \(=\) 2. Ann. Appl. Probab. 1, 189–206 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Durrett, R., Swindle, G.: Are there bushes in a forest? Stoch. Process Appl. 37, 19–31 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Durrett, R., Schonmann, R.H., Tanaka, N.I.: The contact process on a finite set. III: the critical case. Ann. Probab. 17(4), 1303–1321 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Enss, T., Henkel, M., Picone, A., Schollwock, U.: Ageing phenomena without detailed balance: the contact process. J. Phys. A: Math. Gen. 37, 10479 (2004)

    Google Scholar 

  18. Fallert, S.V., Ludlam, J.J., Taraskin, S.N.: Simulating the contact process in heterogeneous environments. Phys. Rev. E 77, 051125 (2008)

    Article  Google Scholar 

  19. Fatès, N.: Guided tour of asynchronous cellular automata. J. Cell. Autom. 9(5–6), 387–416 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Grassberger, P., de la Torre, A.: Reggeon field theory (Schlogl’s First Model) on a lattice: Monte Carlo calculations of critical behaviour. Ann. Phys. 122, 373–396 (1979)

    Article  Google Scholar 

  21. Guichard, F., Halpin, P.M., Allison, G.W., Lubchenco, J., Menge, B.A.: Mussel disturbance dynamics: signatures of oceanographic forcing from local interactions. Am. Nat. 161(6), 889–904 (2003)

    Article  Google Scholar 

  22. Harris, T.E.: Contact Interactions on a lattice. Ann. Probab. 2(6), 969–988 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hinrichsen, H.: Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 49(7), 815–958 (2000)

    Article  Google Scholar 

  24. Kefi, S., Rietkerk, M., Alados, C.L., Pueyo, Y., Papanastasis, V.P., ElAich, A., de Ruiter, P.C.: Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449, 213–217 (2007)

    Article  Google Scholar 

  25. Kefi, S., Rietkerk, M., van Baalen, M., Loreau, M.: Local facilitation, bistability and transitions in arid ecosystems. Theor. Popul. Biol. 71(3), 367–379 (2007)

    Article  MATH  Google Scholar 

  26. Kinzel, W., Yeomans, J.M.: Directed percolation: a finite-size renormalisation group approach. J. Phys. A: Math. Gen. 14, L163–L168 (1981)

    Article  Google Scholar 

  27. Liggett, T.M.: Classics in Mathematics: Interacting Particle Systems. Springer, Berlin (2005)

    Book  Google Scholar 

  28. Liggett, T.M.: T.E. Harris’ contributions to interacting particle systems and percolation. Ann. Probab. 39(2), 407–416 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Maes, Ch., Shlosman, S.B.: When is an interacting particle system ergodic? Commun. Math. Phys. 151(3), 447–466 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Makowiec, D., Gnacinski, P.: Universality class of probabilistic cellular automata. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) Cellular Automata. LNCS, vol. 2493, pp. 104–113. Springer, Berlin (2002)

    Google Scholar 

  31. Mendonza, J.R.G.: Monte Carlo investigation of the critical behavior of Stavskaya’s probabilistic cellular automaton. Phys. Rev. E 83, 012102 (2011)

    Article  Google Scholar 

  32. Peltomaki, M., Rost, M., Alava, M.: Characterizing spatiotemporal patterns in three-state lattice models. J. Stat. Mech. P02042 (2009)

    Google Scholar 

  33. Schonmann, R.H., Shlosman, S.B.: Wulff droplets and the metastable relaxation of kinetic ising models. Commun. Math. Phys. 194(2), 389–462 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stavskaya, O., Piatetski-Shapiro, I.I.: On homogeneous nets of spontaneously active elements. Syst. Theory Res. 20, 75–88 (1971) (Originally published in Russian in 1969)

    Google Scholar 

  35. Stroock, D.W.: An Introduction to Markov Processes. Graduate Texts in Mathematics, vol. 230. Springer, Berlin (2005)

    Google Scholar 

  36. Taggi, L.: Critical probabilities and convergence time of Stavskaya’s Probabilistic Cellular Automata. J. Stat. Phys. 159(4), 853–892 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Toom, A.L.: Cellular automata with errors: problems for students of probability. In: Snell L. (ed) Topics in Contemporary Probability and Its Applications, Probability and Stochastic Series. CRC Press, Boca Raton (1995)

    Google Scholar 

  38. Toom, A.L.: Contours, Convex Sets, and Cellular Automata - Course notes from the 23th Colloquium of Brazilian. Mathematics. UFPE Department of Statistics, Recife (2004)

    Google Scholar 

  39. Toom, A.L., Vasilyev, N.B., Stavskaya, O.N., Mityushin, L.G., Kurdyumov, G.L., Pirogov, S.A.: Discrete local Markov systems. In: Dobrushin, R.L., Kryukov, V.I., Toom, A.L. (eds.) Stochastic Cellular Systems, Ergodicity, Memory and Morphogenesis, pp. 1–182. Manchester University Press, Manchester (1990)

    Google Scholar 

  40. Vazquez, F., Lopez, C., Calabrese, J.M., Munoz, M.A.: Dynamical phase coexistence: a simple solution to the “savanna problem”. J. Theor. Biol. 264, 360–366 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am grateful to Prof Robert MacKay for introduction to the fascinating world of probabilistic cellular automata and for showing me different techniques for analysing them. I am also grateful to the editors and the reviewers for their many insightful comments, which greatly improved this chapter. Finally, I would like to thank the organisers of the workshop on “Probabilistic Cellular Automata: Theory, Applications and Future Perspectives”, June 2013, Eindhoven, for the opportunity to meet and learn from the experts of the field of PCAs. The research of the author has been funded by The Alfred P. Sloan Foundation, New York.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Słowiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Słowiński, P. (2018). Percolation Operators and Related Models. In: Louis, PY., Nardi, F. (eds) Probabilistic Cellular Automata. Emergence, Complexity and Computation, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-65558-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65558-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65556-7

  • Online ISBN: 978-3-319-65558-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics